Search Results

You are looking at 1 - 5 of 5 items for :

  • "Zantedeschia sp." x
  • All content x
Clear All
Free access

Junne-Jih Chen, Ming-Chung Liu, and Yang-Hsiu Ho

Tuber production of calla lily (Zantedeschia elliottiana Spreng cv. Super Gold) was investigated using three size ranges (7-10, 4-7, and <4 mm shoot diameter) of in vitro plantlets acclimated in either pots or soil beds in a protected house. The shoots and tubers of large plantlets exhibited higher rates of dry-matter accumulation than did those of small plantlets. The diameter of tubers harvested from pots ranged from 0.67 to 4.1 cm with median values of 2.7, 2.1, and 1.9 cm for the plants derived from large, medium, and small plantlets, respectively. Plants grown in soil beds, regardless of size, produced larger tubers than did those grown in pots. Tubers >3 cm in diameter developed on 25% and 52% of plants grown in pots and soil beds, respectively. Our results suggest that improved calla lily production could be realized by using larger in vitro plantlets as the source material and growing them in soil beds in a protected house.

Full access

James S. Gerik, Ian D. Greene, Peter Beckman, and Clyde L. Elmore

Two field trials were conducted from 2002 until 2004 to evaluate several chemicals as alternatives to methyl bromide for the production of calla lily (Zantedeschia sp.) rhizomes. Various rates and chemical combinations were tested. The chemicals were applied through a drip irrigation system. The chemicals included iodomethane, chloropicrin, 1,3-dichloropropene, metham, sodium furfural, and sodium azide. None of the treatments reduced the viability of seed of mallow (Malva parviflora) previously buried in the plots. Propagules of nutsedge (Cyperus esculentus) and seed of mustard (Brassica nigra) were controlled by iodomethane + chloropicrin, 1,3-dichloropropene + chloropicrin, chloropicrin alone, 1,3-dichloropropene alone, and furfural + metham sodium. Propagules of calla were controlled by all of the treatments except sodium azide and furfural + metham sodium. In the first trial, all treatments reduced the populations of soilborne plant pathogens, including Pythium spp., Phytophthora spp., and Fusarium oxysporum, except for sodium, which did not reduce the population of Phytophthora spp. In the second trial, all treatments controlled Pythium spp. but only a high rate of iodomethane + chloropicrin reduced the population of F. oxysporum. For all treatments, the incidence of disease caused by soilborne pathogens was reduced compared to the nontreated control. The number and value of harvested rhizomes were greater among all of the treatments, except for sodium azide, compared to the control. The harvested value of the crop for the best treatments increased significantly compared to the control. A successful crop of calla rhizomes can be produced by combinations of iodomethane, chloropicrin, 1,3-dichloropropene, and metham sodium.

Free access

Carolyn Scagel*

Resource partitioning and plant storage components are important factors that influence the productivity and profitability of geophyte species produced as floral crops. We determined that inoculation with arbuscular mycorrhizal fungi (AMF) can alter different plant characteristics affecting productivity and quality of bulb and cut flower production of several floral geophytes including Brodiaea laxa, Zephyranthes sp., Sparaxis tricolor, Freesia × hybrida, Zantedeschia sp., and Canna sp. Plant growth, flower production, bulb/corm/tuber (bulb) production and composition were measured for two growth cycles after inoculation with Glomus intraradices. In general, shoots and flowers on plants inoculated with AMF emerged earlier than shoots and flowers on non-inoculated plants for species that produced most of their leaf area prior to flower emergence. However for species that produced leaves throughout the growth cycle or large flowers early in the growth cycle, AMF inoculation delayed shoot emergence and flower emergence. Many species that exhibited an earlier flower emergence or produced more flowers in response to AMF inoculation also produced smaller daughter bulbs and more offsets than non-inoculated plants. Across all species, the concentrations and contents of several storage components (Zn, S, and N, amino acids, and carbohydrates) that influence bulb quality were increased by AMF inoculation. Changes in partitioning between bulb and flower production resulting from AMF inoculation altered important aspects of commercial geophyte production for flowers or bulbs. AMF-induced increases in mineral uptake and resource storage are also related to aspects of quality important in the production of vegetative propagates.

Free access

Christopher B. Cerveny, William B. Miller, and Alan G. Taylor

dry such as with gladiolus ( Gladiolus spp. L.); or room temperature and dry along with other dry-packed bulbs such as calla lilies ( Zantedeschia sp. Koch.). Meynet (1993) suggested that R. asiaticus TRs should be stored at 15 to 25 °C and 50

Free access

Denise V. Duclos and Thomas Björkman

Zantedeschia sp. ( Naor et al., 2004 )]. Finally, in other species GAs have no effect [long-day plant Sinapis alba ( Corbesier et al., 2004 )] or inhibit reproductive induction [ Fuchsia hybrida ( King et al., 2000 ), Vitis sp. ( Boss et al., 2003