Search Results

You are looking at 1 - 10 of 18 items for :

  • All content x
Clear All
Free access

Chon C. Lim, Rajeev Arora, and Edwin C. Townsend

Seasonal patterns in freezing tolerance of five Rhododendron cultivars that vary in feezing tolerance were estimated. Electrolyte leakage was used, and raw leakage data were transformed to percent leakage, percent injury, and percent adjusted injury. These data were compared with visual estimates of injury. Percent adjusted injury was highly correlated (0.753) to visual estimates. Two asymmetric sigmoid functions—Richards and Gompertz—were fitted to the seasonal percent adjusted injury data for all cultivars. Two quantitative measures of leaf freezing tolerance—Lt50 and Tmax (temperature at maximum rate of injury)—were estimated from the fitted sigmoidal curves. When compared to the General Linear Model, the Gompertz function had a better fit (lower mean error sum of squares) than Richards function. Correlation analysis of all freezing tolerance estimates made by Gompertz and Richards functions with visual LT50 revealed similar closeness (0.77 to 0.79). However, the Gompertz function and Tmax were selected as the criteria for comparing relative freezing tolerance among cultivars due to the better data fitting of Gompertz function (than Richards) and more descriptive physiological representation of Tmax (than LT50). Based on the Tmax (°C) values at maximum cold acclimation of respective cultivars, we ranked `Autumn Gold' and `Grumpy Yellow' in the relatively tender group, `Vulcan's Flame' in intermediate group, and `Chionoides' and `Roseum Elegans' in the hardy group. These relative rankings are consistent with midwinter bud hardiness values reported by nurseries.

Full access

Arthur Villordon, Christopher Clark, Don Ferrin, and Don LaBonte

%:50%, 70%:30%, and 90%:10%. DM experiments were performed with each set of training and testing data, along with evaluation of prediction accuracy. Results M1 [(Tmax + tmin)/2) − B] has been considered as the standard method for calculating GDD and is

Free access

Leena Lindén, Pauliina Palonen, and Mikael Lindén

Seasonal cold hardiness of red raspberry (Rubus idaeus L.) canes was measured by freeze-induced electrolyte leakage test and visual rating of injury. Leakage data were transformed to percentage-adjusted injury values and related to lethal temperature by graphical interpolation and by the midpoint (T50) and inflection point (Tmax) estimates derived from three sigmoid (the logistic, Richards, and Gompertz) functions. Tmax estimates produced by Richards and Gompertz functions were corrected further using two different procedures. The 10 leakage-based hardiness indices, thus derived, were compared to lethal-temperature estimates based on visual rating. Graphical interpolation and Tmax of the logistic or T50 of the Gompertz function yielded lethal-temperature estimates closest to those obtained visually. Also, Tmax values of the Gompertz function were well correlated with visual hardiness indices. The Richards function yielded hardiness estimates deviating largely from visual rating. In addition, the Richards function displayed a considerable lack of fit in several data sets. The Gompertz function was preferred to the logistic one as it allows for asymmetry in leakage response. Percentage-adjusted injury data transformation facilitated curve-fitting and enabled calculation of T50 estimates.

Free access

Chon C. Lim, Rajeev Arora, and Stephen L. Krebs

Winter survival in woody plants is controlled by environmental and genetic factors that affect the plant's ability to cold-acclimate. A juvenile period in woody perennials raises the possibility of differences in cold-acclimating ability between juvenile vs. mature (flowering) phases. This study investigated the yearly cold hardiness (CH) changes of rhododendron populations and examined the relationship between leaf freezing tolerance (LFT) and physiological aging. Naturally acclimated leaves (January) from individual plants (parents-R. catawbiense and R. fortunei, F1, F2, and backcross) and F1 population generated from R. catawbiense and R. dichroanthum cross were subjected to controlled freeze-thaw regimes. LFT was assessed by measuring freeze-thaw-induced ion leakage from leaf discs frozen over a range of treatment temperatures. Data were then plotted with a sigmoidal (Gompertz) curve by SAS, to estimate Tmax—the temperature causing maximum rate of injury. Tmax for the 30- to 40-year-old parental plants (catawbiense, fortunei, and dichroanthum) and the F1 `Ceylon' (catawbiense × fortunei) were estimated to be about -52, -32, -16, and -43 °C, respectively. These values were consistent over the 3-year evaluation period. Data indicated the F2 (50 seedlings) and backcross (20 seedlings) populations exhibited significant, yearly Tmax increment (of ≈5-6 °C) from 1996 to 1998 as they aged from 3 to 5 years old. A similar yearly increase was observed in the 12 F1 progenies (compared 2 to 3 years old) of catawbiense × dichroanthum cross. The feasibility of identifying hardy phenotypes at juvenile period and research implications of age-dependent changes in CH will be discussed.

Free access

Chris A. Martin and Dewayne L. Ingram

Computer modeling was used to study the effect of container volume and shape on summer temperature patterns for black polyethylene nursery containers filled with a 4 pine bark: 1 sand (v/v) rooting medium and located in Phoenix, Ariz. (lat. 33.5°N, long. 112°W) or Lexington, Ky. (lat. 38.0°N, long. 84.4°W). For both locations, medium temperatures were highest at the east and west container walls, halfway down the container profile, regardless of container height (20 to 50 cm) or volume (10 to 70 liters). The daily maximum medium temperature (Tmax) at the center was lower and occurred later in the day as container volume was increased because of an increased distance to the container wall. For both locations, predicted temperature patterns in rooting medium adjacent to the container wall decreased as the wall tilt angle (TA) increased. Predicted temperature patterns at the center of the container profile were lowered in response to the interaction of increased container height and wall TA. As container height decreased, the container wall TA necessary to lower center Tmax to ≤ 40C increased; however, the required increase in TA was greater for Phoenix than for Lexington, principally because of higher ambient air temperatures.

Free access

Chon C. Lim, Rajeev Arora, and Stephen L. Krebs

Few genetic studies have been conducted on the inheritance of cold hardiness (CH) in woody plants. An understanding of the genetic control of CH can greatly assist the breeder in reducing winter injury. This study was initiated to evaluate the distribution of CH phenotypes in segregating populations of evergreen rhododendrons. Naturally acclimated leaves from individual plants (parents, F1 and 47 F2 progeny) were subjected to controlled freeze–thaw regimes. Using slow cooling rates, leaf discs were cooled over a range of treatment temperatures from –10°C to –52°C. Freezing injury of leaf tissue was assessed by measuring ion-leakage and non-linear regression analysis (data fitted to Gompertz functions) was used to estimate Tmax, the temperature causing the maximum rate of injury. Tmax for the parent plants (R. catawbiense & R. fortunei) and the F1 cultivar Ceylon, were estimated to be –51.6°C, –30.1°C, and –40.4°C, respectively. CH estimates among F2 progeny (Ceylon, selfed) were normally distributed from –14.8°C to –41.5°C, with mean of –27.6°C. Most F2 progeny were less cold-hardy than the tender parent, R. fortunei. The apparent reduction in F2 CH may be caused by the differences in age between the parents (20-year-old mature plants) and F2 progenies (3-year-old juvenile seedlings). Currently, we are testing age-dependent CH responses in rhododendrons, and are also characterizing CH distributions in a backcross population.

Free access

R.C. Ebel, B.L. Campbell, M.L. Nesbitt, W.A. Dozier, J.K. Lindsey, and B.S. Wilkins

Estimates of long-term freeze-risk aid decisions regarding crop, cultivar, and rootstock selection, cultural management practices that promote cold hardiness, and methods of freeze protection. Citrus cold hardiness is mostly a function of air temperature, but historical weather records typically contain only daily maximum (Tmax) and minimum (Tmin) air temperatures. A mathematical model was developed that used Tmax and Tmin to estimate air temperature every hour during the diurnal cycle; a cold-hardiness index (CHI500) was calculated by summing the hours ≤10°C for the 500 h before each day; and the CHI500 was regressed against critical temperatures (Tc) that cause injury. The CHI500 was calculated from a weather station located within 0.1 km of an experimental grove and in the middle of the satsuma mandarin (Citrus unshiu Marc.) industry in southern Alabama. Calculation of CHI500 was verified by regressing a predicted CHI500 using Tmax and Tmin, to a measured CHI500 calculated using air temperatures measured every hour for 4 winter seasons (1999-2003). Predicted CHI500 was linearly related to measured CHI500 (r 2 = 0.982). However, the slope was a little low such that trees with a CHI500 = 400, near the maximum cold-hardiness level achieved in this study, had predicted Tc that was 0.5 °C lower than measured Tc. Predicted and measured Tc were similar for nonhardened trees (CHI500 = 0). The ability of predicted Tc to estimate freeze injury was determined in 18 winter seasons where freeze injury was recorded. During injurious freeze events, predicted Tc was higher than Tmin except for a freeze on 8 Mar. 1996. In some freezes where the difference in Tc and Tmin was <0.5 °C there were no visible injury symptoms. Injury by the freeze on 8 Mar. 1996 was due, in part, to abnormally rapid deacclimation because of defoliation by an earlier freeze on 4-6 Feb. the same year. A freeze rating scale was developed that related the difference in Tc and Tmin to the extent of injury. Severe freezes were characterized by tree death (Tc - Tmin > 3.0 °C), moderate freezes by foliage kill and some stem dieback (1.0 °C ≤ Tc - Tmin ≤ 3.0 °C), and slight freezes by slight to no visible leaf injury (Tc - Tmin < 1.0 °C). The model was applied to Tmax and Tmin recorded daily from 1948 through 2004 to estimate long-term freeze-risk for economically damaging freezes (severe and moderate freeze ratings). Economically damaging freezes occurred 1 out of 4 years in the 56-year study, although 8 of the 14 freeze years occurred in two clusters, the first 5 years in the 1960s and 1980s. Potential modification of freeze-risk using within-tree microsprinkler irrigation and more cold-hardy cultivars was discussed.

Free access

Susan L. Steinberg, Gerard J. Kluitenberg, and Soheni Tanzeema

Little attention has been paid to how the presence of roots influences water content measurements obtained with water content sensors. This issue is especially important if sensors are deployed in densely rooted soil or growth media. This work addresses the impact of roots on water content measurements obtained with dual-probe heat-pulse (DPHP) sensors. In the DPHP method, the maximum temperature rise in response to heating (Tmax) is used to calculate volumetric heat capacity, which in turn is used to calculate volumetric water content. The accuracy of DPHP sensors was evaluated in unrooted and rooted 0.25–1 mm baked ceramic aggregate. For both restricted and unrestricted volumes of aggregate the presence of roots caused DPHP sensors to consistently overestimate water content by 0.05–0.09 cm3·cm-3. Measured values of Tmax were lower in the presence of roots, which resulted in overestimation of volumetric heat capacity that was attributed to the high specific heat of water contained in roots in addition to that contained within the aggregate. Differences in water content and aggregate heating between unrooted and rooted aggregate equilibrated to the same matric potential were less distinct in unrestricted volumes, where the decrease in bulk density has the offsetting effect of lowering the heat capacity. Error in water content caused by the presence of roots and changes in bulk density was estimated by developing a theoretical mixing model for volumetric heat capacity that accounted for the heat capacity of all constituents, including aggregate, water, root water, and root tissue. Predicted errors in volumetric water content due to changes in bulk density or changes in heat capacity due to roots agreed well with direct measurement.

Free access

Bandara Gajanayake, Brian W. Trader, K. Raja Reddy, and Richard L. Harkess

Temperature affects reproductive potential, aesthetic, and commercial value of ornamental peppers (Capsicum annuum L.). Limited information is available on cultivar tolerance to temperature stress. An experiment was conducted using pollen and physiological parameters to assess high and low temperature tolerance in ornamental peppers. In vitro pollen germination (PG) and pollen tube length (PTL) of 12 morphologically diverse ornamental pepper cultivars were measured at a range of temperatures, 10 to 45 °C with 5 °C increments. Cell membrane thermostability (CMT), chlorophyll stability index (CSI), canopy temperature depression (CTD), and pollen viability (PV) were measured during flowering. From the modified bilinear temperature–PG and PTL response functions, cardinal temperatures (Tmin, Topt, and Tmax) for PG and PTL and maximum PG (PGmax) and PTL (PTLmax) were estimated. Cultivars varied significantly for PG, PTL, cardinal temperatures for PG and PTL, and all three physiological parameters. Cumulative temperature response index (CTRI) of each cultivar, calculated as the sum of 12 individual temperature responses derived from PV, PGmax, PTLmax, Tmin, Topt, and Tmax for PG and PTL, CMT, CTD, and CSI were used to distinguish differences among the cultivars and classify for high (heat) and low (cold) temperature tolerance. Based on CTRI–heat, cultivars were classified as heat-sensitive (‘Black Pearl’, ‘Red Missile’, and ‘Salsa Yellow’), intermediate (‘Calico’, ‘Purple Flash’, ‘Sangria’, and ‘Variegata’), and heat-tolerant (‘Chilly Chili’, ‘Medusa’, ‘Thai Hot’, ‘Explosive Ember’, and ‘Treasures Red’). Similarly, cultivars were classified for cold tolerance as cold-sensitive, moderately cold-sensitive, moderately cold-tolerant, and cold-tolerant based on CTRI–cold. ‘Red Missile’ and ‘Salsa Yellow’ were classified as cold-tolerant. Cultivar screening using pollen parameters will be ideal for reproductive temperature tolerance, whereas physiological parameters will be suitable for screening vegetative temperature tolerance. The identified heat- and cold-tolerant cultivars are potential candidates in breeding programs to develop new ornamental and vegetable pepper genotypes for high and low temperature tolerance.

Free access

Suat Irmak, D.Z. Haman, A. Irmak, J.W. Jones, B. Tonkinson, D. Burch, T.H. Yeager, and C. Larsen

This research study evaluates the effectiveness of a recently introduced irrigation-plant production system, multipot box system (MPBS), for moderating root zone temperature (RZT) compared with the conventional nursery containers. The study also deals with the development, calibration, and validation of a series of models that can be used to predict maximum (max) and minimum (min) RZTs using commonly available input variables. The Viburnum odoratissimum (Ker.-gawl.) was used as the test plant. Models were calibrated in the fall growing season and validated during the summer. The RZT was used as the dependent variable while the max and min air temperatures (Tmax and Tmin) and/or incoming solar radiation (Rs) were used as independent variables. The color of the MPBS had an effect on plant growth. Plants grown in the white MPBS had higher growth indices, shoot and root dry weights, and number of stems as compared with the plants in the black MPBS or the conventional (control) system (CS). White MPBS maintained cooler RZTs than the max air temperature during both seasons. Also, white MPBS maintained cooler RZTs than the black MPBS and CS during the two seasons. In both seasons, water temperature in the black MPBS was higher than the temperature in the white MPBS contributing to the high RZTs in the black MPBS. The RZT of the black MPBS and CS exceeded the critical value (40 °C), which is cited in the literatures as negatively impacting root growth, water and nutrient uptake, leaf area, plant survival, root and shoot dry weights, water status, and photosynthesis. The RZT in the CS was above 45 °C for most of the summer season and plants were exposed to this extreme temperature for a few hours a day during most of the summer. The white MPBS provided a better environment and enhanced plant growth. For regions where ambient air temperature ranged from 2 to 41 °C, the white MPBS can provide adequate and effective RZT protection for plants grown in No. 1, 3.8-L standard black conventional containers. Predicted RZT values were well correlated with measured values in all systems. Rs did not have an effect on predicting RZTmax in the MPBS treatments. Wind speed did not contribute to predicting RZT in any production systems. The root mean square error between measured and predicted RZT was relatively low ranging from 0.9 to 2.8 °C. Models were able to explain at least 74% of the variability in RZTs using only Tmax, Tmin, and/or Rs. Models developed in this study should be applicable for estimating RZTs when similar management and cultural practices are present. Models of this study are practical, simple, and applicable to predict RZTs where ambient air temperature ranges from 1.9 to 40 °C. Model results should not be extrapolated beyond these limits.