Search Results

You are looking at 1 - 10 of 12 items for :

  • "Plectris aliena" x
Clear All

Abstract

Advances attained by the sixth generation of mass selection in sweet potato (Ipomoea batatas (L.) Lam.) were assessed. The objective was to combine multiple resistances to pathogens, nematodes and insects with other desirable production and market qualities. Although progress from 6 single-year cycles of selection was encouraging, a change to 2-year cycles was indicated. Generation 6 contained high frequencies of flowering and seed set, attractive root shape, orange flesh, thin cortex, root specific gravities of about 1.02, acceptable yield, and resistance to fusarium wilt (Fusarium oxysporum f. sp. batatas (Wr.) Snyd. and Hans.), the southern root-knot nematode (Meloidogyne incognita (Kofoid and White) Chitwood) and the following soil insects: the southern potato wireworm (Conoderus falli Lane), the banded cucumber (Diabrotica balteata LeConte), the spotted cucumber beetle (D. undecimpuncta howardi Barber), the elongate flea beetle (Systena elongata (F.)), a white grub (Plectris aliena Chapin), and the sweet-potato flea beetle (Chaetocnema confinis Crotch).

Open Access

( Diabrotica balteata and Diabrotica undecimpunctata howardi ), and flea beetles ( Systena sp.) ( Chalfant et al., 1990 ; Cuthbert and Davis, 1970 ). Two species of white grubs ( Plectris aliena and Phyllophaga ephilida ), sweetpotato flea beetle

Open Access

Abstract

Twenty-two sweet potato (Ipomoea batatas (L.) Lam.) breeding lines and 19 open-pollinated offspring from each were used to estimate the heritabilities of 7 measures of soil insect injury. Four measures of injury by the wireworm, Diabrotica spp., and Systena spp. (WDS) complex and h2 (± SE) were: percentage of roots injured, 0.45 ± 0.12; holes per root, 0.32 ± 0.09; severity index, 0.37 ±0.11; and damage score, 0.39 ± 0.17. Two measures of injury by the sweetpotato flea beetle, Chaetocnema confinis Crotch, and h2 were: percentage of roots injured, 0.40 ± 0.07, and tunnels per root, 0.25 ± 0.08. The h2 of percentage of roots injured by all insects was 0.51 ± 0.12. The percentage measures were more easily obtained and were as effective as the other measures under the conditions of natural infestation that occurred in this test. Further advances in selection for high levels of resistance to soil insects are possible within the breeding materials tested.

Open Access

This study was designed to determine if the preference of soil insects for sweetpotato [Ipomoea batatas (L.) Lam.] cultivars is affected by the proximity of resistant or susceptible plant cultivars at various spacings. Comparisons were made for damage caused by wireworms (Conoderus spp.), Diabrotica spp., Systena spp., sweetpotato flea beetles (Chaetocnema confinis Crotch), and grubs (Plectris aliena Chapin; Phyllophaga ephilida Say) in previously reported resistant and susceptible cultivars. Field plots were planted with a resistant cultivar, a susceptible cultivar, or the two cultivars intermixed. Large roots exhibited more insect damage than medium and small roots. When plant spacing was increased, roots were larger and insect damage more severe. Mixed plantings of resistant and susceptible cultivars significantly reduced insect damage in the susceptible plants. Planting regime did not influence insect damage for the resistant cultivars.

Free access

Abstract

Six sweet potato (Ipomoea batatas (L.) Lam.) breeding lines, W-71, W-115, W-119, W-125, W-149 and W-154, possessing moderate levels of resistance to the sweet potato weevil, Cylas formicarius elegantulus (Summers), in combination with resistances to other released. They have dark orange flesh, relatively high yields and generally acceptable canning and baking qualities.

Open Access

Abstract

Insect resistance in sweet potatoes (Ipomoea batatas (L.) Lam.) was more effective than fonofos, O-ethyl-S-phenylethylphosphonodithioate, in reducing insect injury to the roots. The most recent resistant line tested did not sustain economic injury from relatively high insect infestations even without the protection of an insecticide. Fonofos at 2.24 and 4.48 kg/ha did not prevent economic injury to the susceptible ‘Goldrush’.

Open Access

This 2-year study was conducted to determine if soil insect damage could be reduced in sweetpotato [Ipomoea batatas (L.) Lam] by treatment with an insecticide (fonofos) and/or a parasitic nematode (Steinernema carpocapsae Weiser), in conjunction with sweetpotato cultivars that differed in susceptibility to soil insect damage. Analysis of field data for the first year showed that the parasitic nematode provided significant damage protection of sweetpotato from wireworms (Conoderus spp.), Diabrotica sp., Systena sp., and sweetpotato flea beetle (Chaetocnema confinis Crotch), but not from grubs (Plectris aliena Chapin; Phyllophaga ephilida Say). In this same test, fonofos used alone provided protection against wireworm-Diabrotica-Systena (WDS complex) damage. In the second test, the nematode did not provide soil insect protection for the WDS complex, but fonofos did reduce damage for these insects. Poor efficacy in the second test with the nematode probably was due to high rainfall, which saturated the soil. Resistant cultivars provided good protection for all three categories of damage. When used with the insect-susceptible check `SC 1149-19', the nematode or fonofos treatments provided better control for all insect categories in the first test. In both years, much higher control of damage by all insect classes was achieved by the use of resistant cultivars in combination with the nematode and/or fonofos treatment (64% higher crop protection than the susceptible check line). Chemical name used: O-ethyl-S-phenylethylphosphonodithioate [fonofos (Dyfonate 10G)].

Free access

Abstract

Soil insect root injury to resistant sweet potato [Ipomoea batatas (L.) Lam.] cultivars ‘Regal’ and ‘Southern Delite’ was compared to injury to ‘Jewel’ and ‘Centennial’ in trials with the resistant-standard W-13 and the susceptible-standard SC 1149-19. Injury by three groups of insects was evaluated: the wirewoom-Diabrotica-Systena complex (WDS), which includes the southern potato wireworm (Conoderus falli Lane), the tobacco wireworm (C. vespertinus Fabricius), the banded cucumber beetle (Diabrotica balteata LeConte), the spotted cucumber beetle (D. undecimpunctata howardi Barber), the elongate flea beetle (Systena elongata Fabricius), the pale-striped flea beetle (S. blanda Melsheimer), and S. frontalis Fabricius (a flea beetle); the sweet potato flea beetle (Chaetocnema confinis Crotch.); and a white grub (Plectris aliena Chapin). Relative control estimates were obtained by comparison to the susceptible standard. ‘Regal’ and ‘Southern Delite’ provided good control of all three insect groups with control of all insect injuries of 79.2% and 81.0%, respectively. ‘Jewel’ and ‘Centennial’ were resistant to the sweet potato flea beetle and sustained less damage by WDS than the susceptible standard, but would still be classed as susceptible to WDS. ‘Centennial’ was as susceptible to the white grub as SC 1149-19. The levels of resistance demonstrated for ‘Regal’ and ‘Southern Delite’ would provide growers an alternative to insecticides for the control of these insects.

Open Access

spp. and Plectris aliena Chapin), sweetpotato weevils [ Cylas formicarius (F.)], and the WDS complex (Wireworm, Diabrotica , Systena ). At Charleston, the WDS complex typically includes the southern potato wireworm ( Conoderus falli Lane), the

Free access

Crotch), white grub larvae ( Plectris aliena Chapin and Phyllophaga ephilida Say), and sweetpotato weevils [ Cylas formicarius (L.)] was not significantly different from ‘Beauregard’; thus, ‘Liberty’ should not be considered resistant to these pests

Free access