Search Results

You are looking at 1 - 5 of 5 items for :

  • "Ozark chinkapin" x
  • All content x
Clear All
Free access

Fenny Dane, Leigh K. Hawkins, and Hongwen Huang

Genetic variation among nine populations of Ozark chinkapin [Castanea pumila (L.) Mill. var. ozarkensis (Ashe) Tucker], threatened by their susceptibility to chestnut blight (Cryphonectria parasitica (Murrill) Barr), was investigated. Population genetic parameters estimated from isozyme variation suggest the populations have a higher genetic diversity (He = 0.227) than populations of the other Castanea Mill. species on the North American continent, the American chestnut (C. dentata (Marsh.) Borkh.) High levels of heterozygosity were detected within the populations, but nonsignificant differences in genetic diversity were observed among the different populations. Principal component analysis based on isozyme allele frequencies or randomly amplified polymorphic DNA phenotype frequencies showed clustering of the same populations. Populations with high levels of genetic diversity and unusual alleles should be the focal point of conservation biologists for capturing much of the genetic variation of the species.

Free access

Fenny Dane and Yuqing Fu

Chestnut blight, caused by the Asian fungus Cryphonectria parasitica, has severely affected chinkapin populations (Castanea pumila), especially those limited to the Ozark mountains (var. ozarkensis). Genetic diversity within and between geographic populations of the Allegheny (var. pumila) and Ozark chinkapin populations was evaluated for development of appropriate conservation strategies. Nuts or dormant buds collected from populations along the range of the species were analyzed using allozymes. A unique allele was detected in populations along the gulf of Mexico. Significant differences in genetic diversity were observed among Allegheny populations, but not among Ozark populations. High levels of genetic identity were detected among widely distributed populations from Florida to Virginia (Allegheny chinkapin populations) and Arkansas (Ozark chinkapin populations).

Free access

Fenny Dane and Hongwen Huang

The genetic diversity within and between four geographic populations of the Ozark chinkapin was evaluated and partitioned in order to gain an understanding of the overall genetic diversity and structure of this species, which will be instrumental for its preservation and germplasm enhancement. Nuts of chinkapin trees along the natural range of the species in the Sylamore Ranger District of the Ozark National Forest in Arkansas were collected and evaluated with isozyme and RAPD markers scattered across the genome. Allozyme differences were detected among the geographic populations. Allele frequencies will be determined and subjected to genetic diversity statistics. A conservation plan will be recommended.

Free access

Fenny Dane

American species in the genus Castanea are susceptible to chestnut blight, caused by the Asian fungus Cryphonectria parasitica. This disease spread throughout the natural range of the American chestnut and reduced the species from a timber and nut producing tree to an understory shrub. The lesser known member of the genus, the chinkapin, has also been affected by this disease and a conservation plan is needed. Genetic diversity within and between geographic populations of the Allegheny chinkapin was evaluated to provide baseline genetic information pertinent to conservation of the species. Nuts of Allegheny chinkapin trees from populations in Mississippi, Florida, Alabama, Virginia, and Ohio were collected and evaluated for isozyme and RAPD marker polymorphism. The genetic diversity of these populations will be compared with that of Ozark chinkapin and American chestnut populations. Conservation strategies will be discussed.

Free access

Ping Lang, Fenny Dane, Thomas L. Kubisiak, and Hongwen Huang

The genus Castanea (Fagaceae), which contains three sections and seven species, is widely distributed in the deciduous forests of the Northern Hemisphere. The phylogeny of Castanea was estimated using DNA sequence data from five different regions of the chloroplast genome. Sequencing results support the genus Castanea as a paraphyletic group with C. crenata, the Japanese chestnut, representing an early divergence in the genus. The three Chinese species form a strongly supported sister clade to the North American and European clade. A unique westward expansion of extant Castanea species is hypothesized with Castanea originating in eastern Asia, an initial diversification within Asia during the Eocene, followed by intercontinental dispersion and divergence between the Chinese and European/North American species during the Oligocene and a split between the European and North American species in the early Miocene. The differentiation within North America and China might have occurred in late Miocene or early Pliocence. The North America species are supported as a clade with C. pumila var. ozarkensis, the Ozark chinkapin, as the basal lineage, sister to the group comprising C. pumila var. pumila, the Allegheny chinkapin, and C. dentata, the American chestnut. Morphological evolution of one nut per bur in the genus may have occurred independently on two continents.