Search Results

You are looking at 1 - 5 of 5 items for :

  • "Ortho X-77" x
  • All content x
Clear All
Free access

Moritz Knoche and Martin J. Bukovac

The effects of selected surfactants and surfactant blends, frequently used in spray application, on deposit formation and foliar absorption of GA3 by sour cherry (Prunus cerasus L. cv. Montmorency) have been investigated. Globular deposits were observed on droplet drying from solutions without surfactants or when the surfactants Activator 90, Tween 20, or Silwet L-77 were present, while annular-shaped deposits were observed with Regulaid, Ortho X-77, and Triton AG-98. Absorption of GA3 without surfactant was 5- and 17-fold higher by the abaxial (8.5% and 20.2% of applied in 1988 and 1989) than adaxial surface (1.6% and 1.2% of applied in 1988 and 1989). Over 24 hours, Ortho X-77 and Activator 90 (45.7% vs. 33.7% in 1988, 42.5% vs. 41.7% in 1989) were most effective in enhancing GA3 penetration through the abaxial surface, followed by Triton AG-98 (38.6% in 1988), Tween 20 (28.6% in 1989), and Regulaid (23.6% in 1988, 16.8% in 1989). Silwet L-77 significantly reduced GA3 uptake (10.7% in 1989) compared with the nonsurfactant control (18.2% in 1989). GA3 uptake increased at a decreasing rate during a 96-hour absorption period when GA3 was applied alone or with Ortho X-77. However, uptake increased linearly with time in the presence of Regulaid, yielding significantly higher GA3 penetration 96 hours after application (44.8%) compared with GA, alone (11.3%) or GA3 with Ortho X-77 (27.7%). GA3 penetration was independent of Tween 20 concentration in the range from 0.0313% to 0.25% but increased with increasing Ortho X-77 concentration (0.0313$%0 to 0.25%) over a 24-hour absorption period. Chemical names used: alkylpolyoxyethylene ether, free fatty acids, isopropanol (Activator 90); alkylarylpolyoxyethyleneglycols, free fatty acids and isopropanol (Ortho X-77); polyoxyethylenepolypropoxypropanol, alkyl 2-ethoxy-ethanol (Regulaid); polyalkyleneoxide modified polydimethylsiloxane copolymers (Silwet L-77); alkylarylpolyethylene glycol (Triton AG-98); polyoxyethylene (20) sorbitan monolaurate (Tween 20); gibberellic acid (GA3).

Free access

Vladimir Orbovic, John L. Jifon, and James P. Syvertsen

Although urea can be an effective adjuvant to foliar sprays, we examined effects of additional surfactants on urea penetration through leaf cuticles along with the effect of urea with and without surfactants on net gas exchange of leaves of `Marsh' grapefruit (Citrus paradisi Macf.) trees budded to Carrizo citrange (C. sinensis L. Osbeck × Poncirus trifoliata L. Raf.) rootstock. Various combinations of urea, a nonionic surfactant (X-77), and an organosilicone surfactant (L-77), were applied to grapefruit leaves and also to isolated adaxial cuticles. When compared to X-77, L-77 exhibited superior surfactant features with smaller contact angles of droplets deposited on a teflon slide. Both L-77 and X-77 initially increased penetration rate of urea through cuticles, but the effect of X-77 was sustained for a longer period of time. The total amount of urea which penetrated within a 4-day period, however, was similar after addition of either surfactant. Solutions of either urea, urea + L-77, urea + X-77, or L-77 alone decreased net assimilation of CO2 (ACO2) for 4 to 24 hours after spraying onto grapefruit leaves. A solution of X-77 alone had no effect on ACO2 over the 4-day period. Although reductions in ACO2 were similar following sprays of urea formulated with two different surfactants, the underlying mechanisms may not have been the same. For the urea + X-77 treatment, X-77 increased the inhibitory effects of urea on ACO2 indirectly by increasing penetration of urea into leaves. For the urea + L-77 formulation, effects of L-77 on ACO2 were 2-fold, direct by inhibiting ACO2 and indirect by increasing urea penetration. One hour after application, scanning electron microscopy (SEM) of leaf surfaces treated with X-77 revealed that they were heavily coated with the residue of the surfactant, whereas leaves treated with L-77 looked similar to nontreated leaves with no apparent residues on their surfaces. The amount of X-77 residue on the leaves was lower 24 hours after application than after 1 hour as observed by SEM.

Free access

Moritz Knoche and Martin J. Bukovac

Gibberellin A3 (GA) applied to virus-infected sour cherry (Prunus cerasus L., `Montmorency') trees inhibits flower initiation and promotes spur formation. However, response to a given dose may vary. Differential foliar absorption has been suggested as a major source of this variation. Therefore, we studied if surfactants would reduce variation in GA absorption. Uptake through the abaxial surface exceeded that through the adaxial surface by about one order of magnitude (adaxial surface 1.1 vs 7.8% in 1988, 0.7 vs 16.6% in 1989). GA uptake was markedly affected by surfactants. Over a 24-hr uptake period, Activator 90 and Ortho X-77 were most effective (abaxial surface 38.3 and 37.4% in 1989), whereas Regulaid did not affect GA uptake. L-77 significantly depressed absorption (abaxial surface 9.1% in 1989). In addition to the level of uptake, surfactants also changed GA absorption kinetics. Penetration increased linearly over a 96-hr time period when Regulaid was included. However, with Ortho X-77, uptake was rapid initially but levelled off within 96 hr. These findings will be discussed in relation to biological response data obtained in the field experiments.

Full access

Megh Singh, Shiv D. Sharma, Analiza H.M. Ramirez, and Amit J. Jhala

.7P–16.6K fertilizer (Tracite; Helena Chemical Co., Collierville, TN) to promote optimum plant growth. Herbicide and surfactant. Glyphosate (Roundup Original; Monsanto, St. Louis) was used in all experiments. The adjuvant Ortho X-77 (Chevron Chemical

Free access

D. Scott NeSmith

benefits in rabbiteye blueberry ( NeSmith and Adair, 2004 ). The growth regulator applications consisted of spraying whole plants to the point of drip using a back pack sprayer. All sprays used the nonionic surfactant Ortho X-77 (Valent USA Corp., Walnut