Search Results

You are looking at 1 - 10 of 11 items for :

  • "Lycopersicon esculentum var. cerasiforme" x
Clear All
Free access

Md. Shahidul Islam, S. Khan and T. Matsui

Sucrose metabolism was followed in developing fruit of domesticated cherry tomato (Lycopersicon esculentum var. cerasiforme Alef.). The high amounts of reducing sugars were consistently linked to high soluble acid invertase (EC 3.2.1.26), whereas sucrose synthase (EC 2.4.1.13) followed the same pattern of sucrose levels and reached a peak of activity during early stage of maturation and then decreased to near nil. In comparison, sucrose phosphate synthase (EC 2.4.1.14) activity remain relatively constant throughout development. Thus, sucrose synthase and acid invertase, rather than sucrose phosphate synthase, are the critical enzymes regulating sucrose accumulation in tomatoes. Cultivated cherry tomato sucrose synthase (UDP-glucose: D-fructose 2-glucosyltransferase) was purified to homogeneity by ammonium sulfate precipitation, anion exchange chromatography on DEAE-Toyopreal 650, and gel filtration on Sephadex G-200. Further purification to homogeneity resulted from a single band from SDS-PAGE. The enzyme was identified as a homotetramer with a total molecular mass of 370 kDa and subunits of 92 kDa. The enzyme showed maximum activity for the cleavage and synthesis of sucrose was at pH 7.0 and 8.0, respectively, and the optimum temperature was 40°C in both directions for HEPES-KOH buffer. The enzymatic reaction followed typical Michaelis–Menten kinetics, with the following parameters: Km (fructose),7.4; Km (UDP-glucose), 0.2612; Km (sucrose), 33.24; Km (UDP), 0.0946. The enzyme was very sensitive to inhibition by heavy metals.

Free access

Sanford D. Eigenbrode, John T. Trumble and Richard A. Jones

Accessions of Lycopersicon esculentum var. cerasiforme (Dun.) A. Gray (cer) and L. pimpinellifolium (Jusl.) Mill. (pimp), sustained significantly less damage to fruit by beet armyworm [Spodoptera exigua (Hiibner)] than standard cultivars and breeding lines of L. esculentum Mill. (esc) under natural infestations in 1990 and 1991 in southern California. The dwarf vine cherry cultivar Tiny Tim also sustained less damage than the standards. Accessions of esc with various monogenic mutations sustained at least as much beet armyworm damage as did standard cultivars. The percentage of fruit damaged was significantly correlated with vine weight, weight per fruit, number of fruit, and the fruit-foliage weight ratio (Pearson's coefficients, respectively: -0.533, 0.450, -0.483, 0.390, n = 37). In laboratory assays, survival of beet armyworm was significantly lower (5% of susceptible& growth rates were significantly lower, and development time was significantly longer on the fruit of resistant `Tiny Tim' and LA 1320 cer than the fruit of 11 other test lines. There were no substantial differences in beet armyworm survival on the foliage of the test lines. In the field trials, there were also significant differences among the test lines in damage by Liriomyza species and hemipteran pests. Lines with genes for increased densities of nonglandular leaf trichomes (especially LA 1663) were generally less damaged by Liriomyza than other lines. Damage by hemipterans was correlated with vine and fruit size, fruit count, and fruit-foliage weight ratio in 1991, but high intraseason variability prevented clear identification of test lines resistant to these pests.

Free access

Joseph. M. Kemble and Randolph G. Gardner

Experiments were conducted in 1989 to determine the heritability of shortened fruit maturation (SFM) period in 871213-1, an inbred cherry tomato line (Lycopersicon esculentum var. cerasiforme (Dunal.) A. Gray), and to determine the relationship between this trait and fruit size. In the first study, a cross was made between 871213-1 and NC 21C-1, an inbred cherry line. NC 21C-1 had a mean maturation period of 40.8 days compared to 32.0 days for 871213-1. A mean maturation period for the F1 hybrid of 32.9 days and 32.2 days was found using 871213-1 as the female and male parent, respectively. Analysis of the data from parental, F1, F2 and backcross generations yielded estimates of broad-sense and narrow-sense heritabilities for SFM as 0.72 and 0.56, respectively. Further analysis indicated that genetic control of SFM was quantitative in nature and highly dominant. A test for epistatic interaction showed significance. In the second study, an F2 population from the cross 871213-1 x NC 309-1, a large-fruited tomato line (Lycopersicon esculentum Mill.), was evaluated to determine if any correlations existed between fruit size and SFM. Two fruit characteristics, locule number and fruit weight, were used as estimates of fruit size. Correlations between SFM and these two characteristics were +0.28 and +0.61, respectively. Broad-sense heritability of SFM was estimated as 0.64.

Free access

John R. Stommel and Kathleen G. Haynes

Anthracnose, caused by Colletotrichum coccodes, is a serious ripe tomato fruit rot disease. Genetic resistance to anthracnose is not available in commercial tomato cultivars, but has been reported in small-fruited Plant Introductions (P.I.), and with lesser intensity in a number of breeding lines. Transfer of high levels of resistance from these breeding lines or P.I.s to elite materials has proven difficult. Inheritance of resistance has been described as complex with at least six loci influencing resistance reactions. Segregating populations originating from a cross between a susceptible tomato breeding line and a large-fruited breeding line (88B147) with resistance derived from Lycopersicon esculentum var. cerasiforme P.I. 272636, were evaluated for anthracnose resistance. Analysis of anthracnose resistance in puncture-inoculated fruit indicated small, but significant, additive genetic effects for resistance. Additional populations were developed from crosses of a susceptible inbred processing tomato cultivar with: 1) the resistant P.I. 272636, 2) an unadapted small-fruited resistant line developed from P.I. 272636, and 3) the large-fruited breeding line 88B147, also with resistance derived from P.I. 272636. Small additive effects identified in large-fruited material, in comparison to the resistant P.I., suggests that resistance loci have been lost during germplasm development. This is consistent with the relatively larger lesions observed in large-fruited lines derived from P.I. 272636. Positive correlations were noted between small fruit size and high levels of anthracnose resistance. Identification of molecular markers linked to resistance genes in the respective populations will be discussed.

Free access

N. Georgelis, J.W. Scott and E.A. Baldwin

Small-fruited cherry tomato accession PI 270248 [Lycopersicon esculentum Mill. var. cerasiforme (Dunal) A. Gray] with high fruit sugars was crossed to large-fruited inbred line Fla.7833-1-1-1 (7833) (L. esculentum) that had normal (low) fruit sugars. The F1 was crossed to PI 270248 and 7833 to obtain BCP1 and BCP2, respectively, and self-pollinated to obtain F2 seed. The resulting population was used to study the inheritance of high sugars from PI 270248. Continuous sugar level frequency distributions of BCP1, BCP2, and F2 suggest that the trait is under polygenic control. Additive variation was significant, but dominance variation was not. There was a heterozygote × heterozygote type of epistasis present that likely caused the F1 sugar level to skew nearly to the level of the high sugar parent. The F2 mean sugar level was lower than the midparent level. Broad-sense heritability was 0.86. There was a significant line × season (fall, spring) interaction where lines with higher sugars were affected more by seasons than lines with lower sugars. Sugar level, in general, was higher in spring. Higher solar radiation in spring than in fall may explain the sugar level difference between the seasons.

Free access

Joseph M. Kemble and Randolph G. Gardner

The heritability of shortened fruit maturation (SFM) period in Cornell 871213-1, an inbred cherry tomato [Lycopersicon esculentum var. cerasiforme (Dunal.) A. Gray] line, was estimated from a greenhouse experiment. Cornell 871213-1 was crossed with the cherry tomato line NC 21C-1. Mean fruit maturation period (FMP) (days from anthesis to the breaker stage of fruit color) was 40.8 days for NC 21C-1 and 32.0 days for Cornell 871213-1. Parental, F1, F2, and backcross generations all differed in mean FMP and yielded, estimates of broad- and narrow-sense SFM heritabilities of 72% and 40%, respectively, on a single-plant basis. A test for midparent heterosis showed significance. Genetic control of SFM was quantitative in nature and highly dominant. A field study of an F2 population developed from the cross Cornell 871213-1 × NC 84173, the latter a large-fruited tomato line (Lycopersicon esculentum Mill.), gave a mean FMP of 48.4 and 31.2 days for NC 84173 and Cornell 871213-1, respectively. The F1 and F2 generations had FMP of 33.1 and 34.7 days, respectively. The parents, F1, and F2 generations all differed in FMP. Parental, F1, and F2 generations yielded an estimate of broad-sense SFM heritability of 64% on a single-plant basis. F3 progenies from selected F2 s were grown in a greenhouse, and F3-F2 regression analysis gave a narrow-sense SFM heritability of 39%. Parental means differed from each other and from the F1 and F2 means for period from sowing to anthesis, fruit weight, and locule number. F1 and F2 means did not differ for any trait and were far below the midparent values, approaching Cornell 871213-1 for each trait except for the number of days from sowing to anthesis. Significant correlations existed in the F2 generation between FMP and fruit weight (0.61) and between fruit weight and locule number (0.69). Significant correlations existed between selected F2s and their F3 progeny for FMP (0.53), fruit weight (0.78), and days from sowing to anthesis (0.78). In the F3 generation, a significant correlation occurred between FMP and fruit weight (0.48). F3-F2 regression and realized heritabilities were used as two estimates of narrow-sense heritability (29% and 31%, respectively) for days from sowing to anthesis.

Free access

N. Georgelis, J.W. Scott and E.A. Baldwin

Small-fruited cherry tomato accession PI 270248 (Lycopersicon esculentum Mill. var. cerasiforme Dunal) with high fruit sugars was crossed to large-fruited inbred line Fla.7833-1-1-1 (7833) that had normal (low) fruit sugar. Sugars in the F2 were positively correlated with soluble solids, glucose, fructose, pH, and titratable acidity, and inversely correlated with fruit size. Earliness was not significantly correlated with sugars but was negatively correlated with fruit size. Thus, the lack of a sugar-earliness correlation indirectly indicates a trend for early tomato plants to be lower in sugars than later maturing plants. Sugars were not correlated with yield or pedicel type. Fruit from indeterminate plants had significantly more sugars than from determinate plants. Six random amplified polymorphic DNA (RAPD) markers linked to high sugars were found, five dominant (OPAE 4, UBC 731, UBC 744, UBC 489, UBC 290) and one co-dominant (UBC 269). Five of the markers were also linked to small fruit size and one of these also was linked to low yield (UBC 290). The sixth marker (UBC 269) was linked to indeterminate plant habit. UBC 731, UBC 489, and possibly OPAE 4 were in one linkage group, while UBC 744 and UBC 290 were in another linkage group. Combinations of all the markers together explained 35% of the sugar variation in the F2 grown in Spring 2002.

Free access

Juana C. García-Santiago, Luis A. Valdez-Aguilar, Armando Hernández-Pérez, Andrew D. Cartmill and Jesús Valenzuela-García

are considered. In contrast to our results, Santamaria et al. (2003) and Bouchaaba et al. (2015) indicate that, when compared with drip-fertigated plants, the yield of subirrigated cherry tomato ( Lycopersicon esculentum var. cerasiforme Alef

Free access

Christopher B. Watkins

-methylcyclopropene treatment on the shelf life and quality of cherry tomato ( Lycopersicon esculentum var. cerasiforme) fruit Int. J. Food Sci. Technol. 40 665 673 Ortiz, G.I. Sugaya, S. Sekozawa, Y. Ito, H. Wada

Free access

Georgia Ntatsi, Dimitrios Savvas, Georgia Ntatsi, Hans-Peter Kläring and Dietmar Schwarz

.D. 1994 High alpha-tomatine content in ripe fruit of Andean Lycopersicon esculentum var. cerasiforme—Developmental and genetic aspects Proc. Natl. Acad. Sci. USA 91 12877 12881 Rook, F. Corke, F. Card, R. Munz, G. Smith, C. Bevan, M.W. 2001 Impaired