Search Results

You are looking at 1 - 10 of 120 items for :

  • All content x
Clear All
Full access

A-Young Lee, Sin-Ae Park, Young-Jin Moon, and Ki-Cheol Son

and EMG ( Aurbach et al., 2017 ). On the basis of the characteristics of the movement and postural control identified through kinetic and kinematic analyses, rehabilitation experts (e.g., occupational therapists, clinical rehabilitation specialists

Free access

Da-Peng Zhang, Zi-Lian Zhang, Jia Chen, and Jiang Lu

By using the micro-volume radio-ligand binding essay, the changes in the kinetic characteristics of the abscisic acid (ABA)-binding protein(s) of the Kyhoh grapevine (Vitis vinifera × V. labrusca) fruit during the different stages of fruit development have been studied. The changes in the berry volume growth, concentration of sugar, organic acids, and ABA in fruit mesocarp have been surveyed, especially for studies of ABA-binding protein. The dissociation constant (Kd) and ABA binding maximum (Bmax) were determined by the Scatchard plots for ABA binding in microsomes of the fruit. They are Kd = 17.5, 50.0, 6.3, 13.3 nmol·L–1; Bmax = 98.6, 523.0, 41.6, 85.4 μmol·mg–1 protein, respectively, for the fruit developmental phase I, II, veraison, and phase III. The Scatchard plots showed a rectilinear function for all of the developmental phases including veraison, which suggests the sole ABA-binding site of high affinity for ABA in the fruit microsomes, but this site could either be only one kind of the same protein or consist of more kinds of different proteins for different developmental stages. The binding affinity of ABA-binding protein(s) for ABA was shown to be higher at veraison time than during other developmental phases; this binding affinity increased nearly by 10 times from phase II to veraison, while the concentration (Bmax) of the ABA-binding protein(s) decreased to the minimum at veraison. The very low concentration of ABA at veraison may be able to trigger the onset of fruit ripening due to the increase of the binding affinity of ABA-binding protein(s) for ABA at this time. The possible functions of the ABA-binding protein(s) for fruit development during the different developmental stages were discussed, and it is suggested that the protein(s) detected could be the putative ABA receptor(s) or transporter(s) for the action of this plant hormone in grapevine.

Full access

Eugene K. Blythe, Jeff L. Sibley, Ken M. Tilt, and John M. Ruter

In five experiments, singlenode cuttings of `Red Cascade' miniature rose (Rosa) were treated with a basal quick-dip (prior to insertion into the rooting substrate) or sprayed to the drip point with a single foliar application (after insertion) of Dip `N Grow [indole-3-butyric acid (IBA) + 1-naphthaleneacetic acid (NAA)], the potassium salt of indole-3-butyric acid (K-IBA), or the potassium salt of 1-naphthaleneacetic acid (K-NAA); a single foliar spray application of Dip `N Grow with and without Kinetic surfactant; or multiple foliar spray applications of Dip `N Grow. Spray treatments were compared with their respective basal quick-dip controls {4920.4 μm [1000 mg·L-1 (ppm)] IBA + 2685.2 μm (500 mg·L-1) NAA, 4144.2 μm (1000 mg·L-1) K-IBA, or 4458.3 μm (1000 mg·L-1) K-NAA}. Cuttings sprayed with 0 to 246.0 μm (50 mg·L-1) IBA + 134.3 μm (25 mg·L-1) NAA, 0 to 207.2 μm (50 mg·L-1) K-IBA, or 0 to 222.9 μm (50 mg·L-1) K-NAA resulted in rooting percentages, total root length, percent rooted cuttings with shoots, and shoot length similar to or less than control cuttings. Exceptions were cuttings sprayed with 0 to 2.23 μm

(0.5 mg·L-1) K-NAA, which exhibited shoot length greater than the control cuttings. Addition of 1.0 mL·L-1 (1000 ppm) Kinetic organosilicone surfactant to spray treatments resulted in greater total root length and shoot length. Repeated sprays (daily up to seven consecutive days) had no or negative effects on root and shoot development.

Free access

G. Andrich, R. Fiorentini, A. Tuci, A. Zinnai, and G. Sommovigo

Abbreviations: A, surface area of fruit per unit weight (m 2 ·kg -1 ); d, density of fruit (kg·1 -1 ), H, equilibrium constant H involved in mass-transfer of O 2 (mol·kg -1 ·Pa -1 ); k -i , kinetic constant involved in mass-transfer of O 2 (Kg·m 2

Free access

Neil Mattson and Heiner Lieth

NH 4 , PO 4 , and K kinetic parameters and N, P, and K storage and allocation within a plant and used this information to model NO 3 and K absorption over rose crop cycles ( Mattson et al., 2006 ; Silberbush and Lieth, 2004 ). Although Eq. [2] was

Free access

Qiang Xiao, XiaoHui Fan, XiaoHui Ni, LiXia Li, GuoYuan Zou, and Bing Cao

range were examined in this study. The variability of these parameters in the 10–35 °C range was less than that at higher temperatures, and this was also the case with the reactive kinetic parameters. Moreover, the CNR rate remained relatively stable

Free access

Krishna N. Reddy and Megh Singh

A field study was conducted to evaluate the effectiveness of Kinetic and Sylgard 309 organosilicone adjuvants to increase the efficacy of glyphosate for control of Florida pusley (Richardia scabr a L.), southern crabgrass [Digitaria ciliari s (Retz.) Koel], hairy beggarticks (Bidens pilos a L.), camphorweed [Heterotheca subaxillaris (Lam.) Britt. and Rusby], bahiagrass (Paspalum notatu m Fluegge), bermudagrass [Cynodon dactylo n (L.) Pers.], and torpedograss (Panicum repen s L.). Glyphosate, either at 0.5 or 1.0 kg a.i./ha, was applied alone or in combination with Kinetic, Sylgard 309, or X-77 using a tractor-mounted boom sprayer that delivered 187 liters·ha-1 at 207 kPa pressure. Glyphosate applied at 0.5 kg·ha-1 controlled > 94% of Florida pusley, southern crabgrass, hairy beggarticks, and camphorweed. Glyphosate efficacy improved on Florida pusley and southern crabgrass when applied with the adjuvants. Glyphosate, regardless of adjuvant, completely controlled hairy beggarticks and camphorweed. Control of bahiagrass, bermudagrass, and torpedograss with adjuvants was better than without adjuvants. However, glyphosate with Kinetic or Sylgard 309 was more effective in suppressing regrowth of these perennial grasses than glyphosate with X-77. Chemical names used: isopropylamine salt fo N -(phosphonomethyl)glycine with an in-can surfactant (glyphosate); proprietary blend of polyalkyleneoxide-modified polydimethylsiloxane and nonionic organosilicone adjuvant (Kinetic); silicone adjuvant mixture of 2-(3.hydroxypropyl)-heptamethyltrisiloxane, ethyloxylated, acetate EO glycol, -allyl, -acetate (Sylgard 309); mixture of alkylarylpolyoxyethylene glycols, free fatty acids, and isopropanol nonionic adjuvant (X-77).

Free access

Luis Pozo and Jacqueline K. Burns

(AgroFresh, Inc., Philadelphia, PA) as SmartFresh (3.3% a.i.) was also used. Compounds were dissolved in distilled water that contained the organosilicate adjuvant Kinetic (Setre Chemical Co., Collierville, TN) at 0.15% (v/v). Treatments described

Free access

Eric A. Curry and John J. Burke

Development of valid temperature-based models of physiological processes such as seed germination, bud development, vegetative growth, fruit development, or fruit maturation, requires a parameter to link temperature with plant metabolism. The Thermal Kinetic Window (TKW) concept uses the temperature characteristics of an enzyme kinetic parameter, the Michaelis constant (Km) as indicators of metabolic efficiency. Recently, Burke3 has shown that the temperature dependence of the rate and magnitude of the reappearance of photosystem II (PSII) variable fluorescence following illumination corresponded with the optimal temperature described by the TKW for several plant species. The present study investigated the use of the temperature sensitivity of PSII fluorescence in the identification of temperature optima of apple cultivars and rootstocks. 3Burke, J.J. 1990. Plant Physiol. 93:652-656.

Free access

F.S. Davies, M.W. Fidelibus, and C.A. Campbell

An experiment was conducted to determine if gibberellic acid (GA; ProGibb, Abbott Labs) can be mixed with Aliette or Agri-Mek and oil to reduce application costs, without reducing GA efficacy, and if Silwet and Kinetic adjuvants enhance GA efficacy. Five tank mixes were tested along with a nonsprayed control. The tank mixes included: 1) GA, 2) GA + Silwet, 3) GA + Kinetic, 4) GA + Silwet + Aliette, and 5) GA + Silwet + Agri-Mek + oil. All compounds were applied at recommended concentrations. In September, ≈24 L of each tank mix was applied with a hand sprayer to mature `Hamlin' orange trees [Citrus sinensis (L.) Osb.] on sour orange (Citrus aurantium L.) rootstock. Peel puncture resistance (PPR), peel color, and juice yield (percent juice weight) were evaluated monthly between Dec. 1997 and Mar. 1998. On most sampling dates the fruit of treated trees had higher PPR and were less yellow in color than fruit from control trees. However, in Jan., fruit treated with GA + Silwet and GA + Kinetic had greater PPR than other treatments. In Feb., fruit treated with GA + Silwet + Agri-Mek + oil had the lowest PPR. The effect of the different tank mixes on juice yield was usually similar to the effect of the tank mixes on PPR and peel color. On 8 Jan. 1998, fruit from trees treated with GA alone yielded significantly more juice than fruit from control trees. On 24 Feb. 1998, fruit from trees treated with GA alone yielded more juice than fruit from the other treatments. Thus, GA efficacy is generally not reduced by these tank mixes, nor improved by adjuvants.