Search Results

You are looking at 1 - 10 of 80 items for :

  • Refine by Access: All x
Clear All
Free access

Gerry H. Neilsen, Denise Neilsen, Frank Kappel, Peter Toivonen, and Linda Herbert

irrigation frequency, P fertigation, and mulching on the initial growth of the sweet cherry cultivars Cristalina and Skeena on the dwarfing rootstock Gisela 6. Materials and Methods An experimental orchard of ‘Cristalina’ and ‘Skeena’ sweet cherry on

Full access

Efstathia Exadaktylou, Thomas Thomidis, Brian Grout, George Zakynthinos, and Constantinos Tsipouridis

Gisela 5’ is a triploid hybrid developed at the University of Giessen, Germany, and is among the best dwarfing [≈50% of ‘Mazzard’ sweet cherry ( Prunus avium )], precocious and productive rootstocks for modern, intensive sweet cherry growing

Full access

Lance V. Stott, Brent Black, and Bruce Bugbee

less extensive root systems ( Beckman and Lang, 2003 ; Black et al., 2010 ). A rootstock may also be able to recover more quickly and completely following a drought-stress event, which would be desirable in the case of a production orchard. The Gisela

Free access

Gerry Neilsen, Frank Kappel, and Denise Neilsen

). Thus, a study was undertaken with ‘Lapins’ on Gisela 5 with the objectives of testing the effects of crop load adjustment through dormant spur thinning and fertigation treatments on yield, nutrition, and quality of sweet cherry in high-density plantings

Free access

Mateja Štefančič, Franci Štampar, and Gregor Osterc

The influence of two exogenously applied auxins (IAA and IBA) on the root and shoot development of leafy cuttings was analyzed at 'GiSelA 5', the dwarfing cherry rootstock. IBA (indole-3-butyric acid) hindered the callus formation in the early period of root development and it was more successful than IAA (indole-3-acetic acid) in promoting earlier root development. IBA also influenced the stronger shoot growth and the development of acrobasal type of the rooting system, and induced higher number of roots. Those parameters are very important for the quality and survival of the new plants and they are not the consequence of the higher IAA content in the rooting zones of cuttings in the first days of root development. Both auxin treatments had no effect on the final percent of the rooted cuttings neither on the survival of cuttings, but they increased the percent of rooted cuttings without callus. The root system with callus proved less qualitative, because the cuttings with such root system developed significantly less roots per rooted cutting and their shoot length was shorter than those of the cuttings without callus at both auxin treatments. Exogenously applied auxins were not crucial for root formation, however their application resulted in higher percent of more qualitative 'GiSelA 5' leafy cuttings. IBA proved as the most efficient treatment and it additionally induced earlier root formation.

Free access

Hatice Gulen, Yasar Erbil, and Atilla Eris

A stock plant etiolation treatment was tested to improve rooting of the important cherry rootstock Gisela-5. To create the etiolation effect, at the beginning of the growing season, banding (blanching) was initiated on stock plants by placing black plastic tape at the base of new shoots for 6 or 10 weeks. Cuttings were excised so that the banded area was at the cutting base. IBA was applied at two concentrations (5 and 10 mm) to the cutting base following wounding and cuttings were placed in perlite (100%) rooting medium under mist. The rooting percentage, number of roots per cutting and root length were measured 4 weeks after planting. Banding and duration significantly stimulated rooting of leafy softwood cuttings. The highest rooting percentage (80.0%) was obtained on cuttings banded for 6 weeks and treated with 5 mm IBA.

Free access

Gerry Neilsen, Frank Kappel, and Denise Neilsen

`Lapins' sweet cherry (Prunus avium L.) trees on Gisela 5 (Prunus cerasus × Prunus cansecens) rootstock were maintained for the first four growing seasons with eight different fertigation treatments. Treatments involved N application at low (42 mg·L-1), medium (84 mg·L-1), and high (168 mg·L-1) concentrations via sprinkler-fertigation of Ca(NO3)2 each year about 8 weeks after bloom. The medium N treatment was also applied with P fertigation in early spring or with K fertigation in June. Nitrogen was also broadcast in early spring at 75 kg·ha-1 or followed with medium N sprinkler-fertigated postharvest in August. As a final treatment the medium root zone N concentration was maintained for 8 weeks postbloom via drip fertigation. Throughout the study, irrigation was scheduled to meet evaporative demand based on an electronic atmometer. Drip fertigation, which wet a smaller portion of the orchard floor, considerably reduced per-tree water applications. Tree vigor and pruning weights were reduced for drip-fertigated as compared to sprinkler-fertigated trees although cumulative yield was not significantly different during the study. Fruit size, however, was smaller for this treatment when crop load was at a maximum at year 4. Future research is warranted to insure fruit size can be maintained for heavily cropping drip-fertigated trees. Leaf and fruit N increased linearly as N concentration of sprinkler-fertigating solution increased from low to high values. Optimum yield and highest fruit quality were associated with the medium N treatment. Sprinkler fertigation of P and K did not increase leaf and fruit concentration of either nutrient or meaningfully affect tree performance.

Free access

Matthew D. Whiting and David Ophardt

The development of novel crop load management techniques will be critical to the adoption and success of high density sweet cherry orchard systems based on new clonal rootstocks. Herein we report on a comparison of potential means of balancing crop load of `Bing' sweet cherry grown on the productive and precocious rootstocks `Gisela 5' and `Gisela 6'. In 2002, thinning treatments were applied to entire trees and consisted of an unthinned control (C), and manual removal of 50% of the blossoms (B) or 50% of 2-year-old and older fruiting spurs (S), throughout the tree. In 2003 all trees were left unthinned to characterize the carry-over effect of thinning treatment in 2002. In 2002, compared to C, thinned trees had 38% to 49% fewer fruit per tree, 22% to 42% lower yield, 8% to 26% higher fruit weight, and 2% to 10% larger fruit diameter. S and B treatments reduced yield by 42% and 22% on `Gisela 5' and by 40% and 31% on `Gisela 6', respectively. `Gisela 5'-rooted trees showed greater improvements in fruit quality than did trees on `Gisela 6'. Compared to C-, S-, and B-treated trees on `Gisela 5' yielded fruit that was 15% and 26% heavier, respectively. Yield of fruit ≥25.5 mm diameter was increased by 240% by S and 880% by B, though yield of this size fruit was still low (1.5 and 5.2 kg/tree, respectively). Neither technique had any beneficial carryover effect in the year following treatment despite S trees bearing about 25% fewer fruit than B and C trees. In both years, `Gisela 5'-rooted trees bore about 15% fewer fruit than trees on `Gisela 6'. Compared to `Gisela 5', `Gisela 6'-rooted trees were about 41%, 46%, and 24% more productive for C, S, and B, respectively. Number of fruit/tree in 2003 was within 4% and 8% of the previous year on `Gisela 6' and `Gisela 5', respectively. Crop value analyses suggest growers would be rewarded for producing high yields of medium size fruit (e.g., 21.5 to 25.4 mm) compared to low yields of high quality fruit.

Free access

Matthew D. Whiting and Gregory A. Lang

Canopy fruit to leaf area ratios (fruit no./m2 leaf area, F:LA) of 7- and 8-year-old `Bing' sweet cherry (Prunus avium L.) on the dwarfing rootstock `Gisela 5' (P. cerasus L. × P. canescens L.) were manipulated by thinning dormant fruit buds. F:LA influenced yield, fruit quality, and vegetative growth, but there were no consistent effects on whole canopy net CO2 exchange rate (NCERcanopy). Trees thinned to 20 fruit/m2 LA had yield reduced by 68% but had increased fruit weight (+25%), firmness (+25%), soluble solids (+20%), and fruit diameter (+14%), compared to unthinned trees (84 fruit/m2). Fruit quality declined when canopy LA was ≈200 cm2/fruit, suggesting that photoassimilate capacity becomes limiting to fruit growth below this ratio. NCERcanopy and net assimilation varied seasonally, being highest during stage III of fruit development (64 days after full bloom, DAFB), and falling more than 50% by 90 DAFB. Final shoot length, LA/spur, and trunk expansion were related negatively to F:LA. F:LA did not affect subsequent floral bud induction per se, but the number of flowers initiated per bud was negatively and linearly related to F:LA. Although all trees were thinned to equal floral bud levels per spur for the year following initial treatment (2001), fruit yields were highest on the trees that previously had no fruit, reflecting the increased number of flowers initiated per floral bud. Nonfruiting trees exhibited a sigmoidal pattern of shoot growth and trunk expansion, whereas fruiting trees exhibited a double sigmoidal pattern due to a growth lag during Stage III of fruit development. Vegetative growth in the second year was not related to current or previous season F:LA. We estimate that the LA on a typical spur is only sufficient to support the full growth potential of a single fruit; more heavily-set spurs require supplemental LA from nonfruiting shoots. From these studies there appears to be a hierarchy of developmental sensitivity to high F:LA for above-ground organs in `Bing'/`Gisela 5' sweet cherry trees: trunk expansion > fruit soluble solids (Stage III) > fruit growth (Stage III) > LA/spur > shoot elongation > fruit growth (Stages I and II) > LA/shoot. Current season F:LA had a greater influence on fruit quality than prior cropping history, underscoring the importance of imposing annual strategies to balance fruit number with LA.

Full access

Matthew D. Whiting, David Ophardt, and James R. McFerson

The commercial adoption of the relatively new rootstock `Gisela 5' (Prunus cerasus L. × P. canescens L.) has been limited in the United States sweet cherry (P. avium L.) industry despite its ability to induce precocity and productivity and reduce scion vigor compared to the standard Mazzard (P. avium). This is due in large part to inadequate crop load management that has led to high yields of small fruit. This paper reports on sweet cherry chemical blossom thinning trials conducted in 2002 and 2003. Two percent ammonium thiosulphate (ATS), 3% to 4% vegetable oil emulsion (VOE), and tank mixes of 2% fish oil + 2.5% lime sulphur (FOLS) were applied to entire 8- and 9-year-old `Bing'/`Gisela 5' sweet cherry canopies at about 10% full bloom (FB) and again at about 90% FB. In both years, ATS and FOLS reduced fruit set by 66% to 33% compared to the control (C). VOE reduced fruit set by 50% compared to C in 2002 but had no effect in 2003. In 2002, fruit yield was 30% to 60% lower from thinned trees. In 2003, fruit yield was unaffected by thinning treatment. In 2002, ATS and FOLS improved fruit soluble solids but had no effect in 2003. VOE did not affect fruit soluble solids in 2002 and reduced fruit soluble solids by 12%, compared to C, in 2003. In 2002, each thinning treatment nearly eliminated the yield of the small fruit (≤21.5-mm diameter) and increased yield of large fruit (≥26.5 mm) by more than 400%, compared to C. In 2003, ATS and FOLS did not affect yield of small fruit but increased the yield of large fruit by 60%. In 2003, VOE-treated trees yielded 4.3 kg of small fruit per tree compared to about 0.15 kg from C, suggesting a phytotoxic response to VOE beyond that which may effect thinning. Compared to C, ATS and FOLS consistently reduced fruit set and improved fruit quality. We conclude that commercially acceptable yields of excellent quality `Bing' sweet cherries can be grown on size-controlling and precocious rootstocks.