Search Results

You are looking at 1 - 10 of 71 items for :

  • All content x
Clear All
Free access

Derald A. Harp

A major problem in golf course construction is trying to optimize the use of existing vegetation, especially trees. In North Central Texas, this is made more difficult by the predominance of post oak (Quercus stellata), a tree that declines severely when cultural conditions are modified. The purpose of this project was to create a map using GPS technology of the existing trees, before final planning and construction of the golf course. In addition to the map, a database was created which would be used for future maintenance and management decisions. The GPS equipment consisted of a Trimble PRO-XRS GPS receiver and Trimble TDC-1 data logger and a Laser Atlanta laser rangefinder. Information collected for the database included tree number, latitude, longitude, number, identification, caliper, estimated height, and quality. Quality ratings were defined as 1) specimen, 2) good, 3) fair, 4) poor, 5) unacceptable. Tree numbers were placed on each tree rated above unacceptable, using metal tree tags. Height estimates were made using the vertical offset feature of the GPS equipment. Base maps were created using Pathfinder Office. Hard copy maps were printed, and digital copies were saved in raw and.dxf format for importation into AutoCAD. This map was combined with existing course plans and adjustments were made to save as many specimen trees as possible. Raw information was also imported into a Microsoft Access 97 database. This project created a database and maps that will provide important information in the future, and the development of the course with minimal loss of specimen trees.

Free access

Rick Bates

Global positioning system (GPS) and geographic information system (GIS) technologies are at the cutting edge of an emerging agricultural revolution called site-specific management. Anticipated benefits are both economic and environmental because in this system, herbicides, fertilizers and other inputs are placed only where needed in the precise amounts required. The opportunities for site-specific management of crops, soils, and pests are innumerable. However, most students of agriculture and land resource sciences have little, if any, experience with the GPS and GIS technologies that provide these new opportunities. Beginning in 1995, efforts were undertaken to integrate GPS/GIS technology into the College of Agriculture curriculum. The process began with GPS/GIS training workshops for local and regional faculty. Key faculty modified curriculum within several departmental options and produced instructional modules for 12 different agriculture science courses. Experiential learning opportunities were developed and in some classes, farmer practitioners of site-specific management participated with students in identifying management problems and solutions. Instructional modules and active learning exercises were formally evaluated as to their effects on enhanced student decisionmaking skills and competency in GPS/GIS applications. Recently the new course LRES 357 “GPS/GIS Applications” was added to the curriculum and work is underway to place this course on-line.

Full access

Timothy L. Righetti and Michael D. Halbleib

Agriculture is changing. State-of-the-art computer systems that use GPS (global positioning systems) data, GIS (geographic information systems) software, remotely sensed images, automated sampling, and information analysis systems are transforming growers' ability to produce their crops. Currently, the farm service and agricultural sales industry, rather than the grower direct most information technology applications. Precision agriculture must become an information-driven and grower-driven process. Data evaluation has to be made simpler, less time consuming, and inexpensive. The purpose of this paper is to outline potential strategies and demonstrate how information can be processed and evaluated with readily available and inexpensive analytical tools.

Full access

Steven F. Berkheimer, Eric J. Hanson, Jason K. Potter, and Jeffrey A. Andresen

Some highbush blueberry (Vaccinium corymbosum) fields adjacent to Michigan roads exhibit abnormally high levels of winter fl ower bud mortality and twig dieback, even following relatively mild winters. This work was conducted to determine if this injury was caused by deicing salts (primarily sodium chloride) that are applied to adjacent roads and blown by the wind onto bushes. Flower bud mortality was recorded in the spring at several locations within six farms adjacent to divided highways treated with deicing salts. Four farms were east of highways (downwind of prevailing wind direction) and two were west (upwind) of highways. Each May for 3 years, the numbers of live and dead fl ower buds were counted on plants located varying distances from the highway. Bush position and distance from the highway were determined with global positioning system (GPS) equipment. Bud health was also assessed monthly during the winter. In fields located downwind of highways, bud mortality was consistently greatest close to the road and decreased with distance. Salt had an apparent effect on mortality 60 to 120 m from the highway, depending on the year. In fields west or upwind of highways, bud mortality was not consistently related to distance from the highway. Flower bud injury was evident by mid-January, and increased throughout the winter. Results indicated that wind-blown salt spray can cause considerable injury in blueberry fields close to salted roads.

Full access

Q.U. Zaman, A.W. Schumann, and H.K. Hostler

Many citrus groves in Florida were affected by hurricanes in Summer 2004. A commercial 42-acre `Valencia' sweet orange (Citrus sinensis) grove of 2980 trees was routinely scanned with an automated ultrasonic system to measure and map tree canopy volumes. We estimated tree damage by comparing canopy volumes measured before and after the hurricanes of 2004. Ultrasonically sensed tree canopy volume was mapped and the relative tree canopy volume loss percentage (TCVL%) for each tree was calculated and classified into six categories [≤0 (no damage), 1% to 24%, 25% to 49%, 50% to 74%, 75% to 99%, and 100%]. Authenticity of the ultrasonically sensed missing trees was established by ground truthing or matching visually observed and georeferenced missing tree locations with ultrasonically sensed missing trees in the grove. Ninety-one trees were found missing during ground inspections after hurricanes and they exactly matched with ultrasonically sensed missing tree locations throughout the grove. All of the missing trees were in TCVL% categories 5 and 6 (≥75% damage). Some canopy volume was still detected with ultrasonics at the missing tree locations because of the presence of tall grass, weeds, or branches of large adjacent trees. More than 50% of trees in the grove were damaged (completely or partially) and generally larger trees (>100 m3) were damaged more by the hurricanes than small or medium size trees in each tree canopy volume loss category. The automated ultrasonic system could be used to rapidly identify missing trees (completely damaged) and to estimate partial tree canopy volume loss after hurricanes.

Full access

Pierre C. Robert

A better awareness of soil and crop condition variability within fields brought the notion, in the early 1980s that variable management within fields by zones rather than whole fields would increase profitability by doing the right thing at the right place in the right way. At the same time, the microcomputer became available and made possible the acquisition, processing, and use of spatial field data as well as the development of a new kind of farm machinery with computerized controllers and sensors. Precision agriculture (PA) has been considered for most common cropping systems and some specialty crops, worldwide. It is particularly well adapted to high value crops such as many horticultural crops. PA is still in infancy and its adoption varies greatly but precision agriculture is the agricultural system of the future. It offers a variety of potential benefits in profitability, productivity, sustainability, crop quality, food safety, environmental protection, on-farm quality of life, and rural economic development.

Full access

Gary T. Roberson

Precision agriculture is a comprehensive system that relies on information, technology and management to optimize agricultural production. While used since the mid-1980s in agronomic crops, it is attracting increasing interest in horticultural crops. Relatively high per acre crop values for some horticultural crops and crop response to variability in soil and nutrients makes precision agriculture an attractive production system. Precision agriculture efforts in the Department of Biological and Agricultural Engineering at North Carolina State University are currently focused in two functional areas: site-specific management and postharvest process management. Much of the information base, technology, and management practices developed in agronomic crops have practical and potentially profitable applications in fruit and vegetable production. Mechanized soil sampling, pest scouting and variable rate control systems are readily adapted to horticultural crops. Yield monitors are under development for many crops that can be mechanically harvested. Investigations have begun to develop yield monitoring capability for hand harvested crops. Postharvest controls are widely used in horticultural crops to enhance or protect product quality.

Full access

Ronnie W. Heiniger

New technologies such as differential global positioning systems (DGPS) and geographical information systems (GIS) are making it possible to manage variability in soil properties and the microenvironment within a field. By providing information about where variability occurs and the patterns that exist in crop and soil properties, DGPS and GIS technologies have the potential of improving crop management practices. Yield monitoring systems linked to DGPS receivers are available for several types of horticultural crops and can be used in variety selection and/or improving crop management. Precision soil sampling and remote sensing technologies can be used to scout for infestations of insects, diseases, or weeds, to determine the distribution of soil nutrients, and to monitor produce quality by measuring crop vigor. Combined with variable rate application systems, precision soil sampling and remote sensing can help direct fertilizer, herbicide, pesticide, and/or fungicide applications to only those regions of the field that require soil amendments or are above threshold levels. This could result in less chemical use and improved crop performance. As with any information driven system, the data must be accurate, inexpensive to collect, and, most importantly, must become part of a decision process that results in improvements in crop yield, productivity, and/or environmental stewardship.

Full access

Arnold W. Schumann

maps for future site-specific applications of agrochemicals. Real-time SSM generally does not need GPS data because decisions about agrochemical rates and crop target are made on the spot at the time of the measurement. Prescription map SSM needs GPS

Full access

Melody Reed Richards, Larry A. Rupp, Roger Kjelgren, and V. Philip Rasmussen

(about lat. 41.41°N to 42.33°N, long. 111.57°W to 112.10°W). The freehand images taken in 2007 were very difficult to locate on the ground. Therefore, in 2008, tracking data from a handheld GPS device (GPSMAP ® 60C or GPSMAP ® 60CSx; Garmin