Search Results

You are looking at 1 - 10 of 32 items for :

Clear All
Free access

Joseph P. Albano and Donald J. Merhaut

Fe source on substrate and leachate runoff chemistry during the production of marigold were determined. Therefore, objectives of the study were to assess the performance of FeEDDS in comparison with Fe chelates (FeEDTA, FeDTPA, FeEDDHA) and with a non

Free access

Brandon R. Smith and Lailiang Cheng

`Concord' grapevines (Vitis labruscana Bailey) can readily develop iron deficiency-induced leaf chlorosis when grown on calcareous or high pH soils. Iron (Fe) chelates are often applied to the soil to remedy chlorosis but can vary in their stability and effectiveness at high pH. We transplanted own-rooted 1-year-old `Concord' grapevines into a peat-based medium adjusted to pH 7.5 and fertigated them with 0, 0.5, 1.0, 2.0, or 4mg·L–1 Fe from Fe-EDDHA [ferric ethylenediamine di (o-hydroxyphenylacetic) acid] to determine the effectiveness of this Fe chelate for alleviating Fe deficiency-induced chlorosis at high pH. Vines were sampled midseason for iron, chlorophyll, CO2 assimilation, and photosystem II quantum efficiency (PSII) and at the end of the season for leaf area, dry weight, and cane length. We found that leaf total Fe concentration was similar across all treatments, but active Fe (extracted with 0.1 n HCl) concentration increased as the rate of Fe-EDDHA increased. Chlorophyll concentration increased curvilinearly as applied Fe increased and was highly correlated with active Fe concentration. CO2 assimilation, stomatal conductance, and PSII were very low without any supplemental Fe and increased rapidly in response to Fe application. Total leaf area, foliar dry weight, and cane length all increased as Fe application increased to 1 mg·L–1 Fe, but above this rate, a further increase in Fe did not significantly increase growth. Our results demonstrate that Fe-EDDHA is very effective in alleviating Fe deficiency-induced leaf chlorosis in `Concord' grapevines grown at high pH, which provides a foundation for continuing research related to the optimum rate and timing of application of Fe-EDDHA in `Concord' vineyards on calcareous soils. Compared with total Fe, leaf “active Fe” better indicates the actual Fe status of `Concord' vines.

Free access

Timothy K. Broschat and Kimberly K. Moore

Zonal geraniums (Pelargonium ×hortorum) from seed and african marigolds (Tagetes erecta), which are known to be highly susceptible to Fe toxicity problems, were grown with I, 2, 4, or 6 mm Fe from ferrous sulfate, ferric citrate, FeEDTA, FeDTPA, FeEDDHA, ferric glucoheptonate, or ferrous ammonium sulfate in the subirrigation solution. FeEDTA and FeDTPA were highly toxic to both species, even at the 1 mm rate. Ferrous sulfate and ferrous ammonium sulfate caused no visible toxicity symptoms on marigolds, but did reduce dry weights with increasing Fe concentrations. Both materials were slightly to moderately toxic on zonal geraniums. FeEDDHA was only mildly toxic at the 1 mm concentration on both species, but was moderately toxic at the 2 and 4 mm concentrations. Substrate pH was generally negatively correlated with geranium dry weight and visible phytotoxicity ratings, with the least toxic materials, ferrous sulfate and ferrous ammonium sulfate, resulting in the lowest substrate pHs and the chelates FeEDTA, FeDTPA, and FeEDDHA the highest pH. The ionic Fe sources, ferrous sulfate and ferrous ammonium sulfate, suppressed P uptake in both species, whereas the Fe chelates did not. Fe EDDHA should be considered as an effective and less toxic alternative for the widely used FeEDTA and FeDTPA in the production of these crops.

Free access

Timothy K. Broschat and Monica L. Elliott

Foxtail palms (Wodyetia bifurcata Irvine) were grown in 6.2-L containers using a 3 calcitic limestone gravel: 2 coir dust (by volume) substrate to induce Fe chlorosis. Plants were treated initially and 2 and 4 months later with soil applications of FeDTPA, FeEDDHA, FeEDTA+FeHEDTA on vermiculite, FeEDTA+FeDTPA on clay, ferric citrate, ferrous ammonium sulfate, ferrous sulfate, ferrous sulfate+sulfur, or iron glucoheptonate at a rate of 0.2 g Fe/container. Similar plants were treated initially and 2 and 4 months later with foliar sprays of FeDTPA, FeEDDHA, ferric citrate, ferrous sulfate, or iron glucoheptonate at a rate of 0.8 g Fe/L. After 6 months, palms receiving soil applications of FeEDDHA, FeEDTA+FeHEDTA on vermiculite, FeDTPA, or FeEDTA+FeDTPA on clay had significantly less chlorosis than plants receiving other soil-applied Fe fertilizers or untreated control plants. Palms treated with foliar Fe fertilizers had chlorosis ratings similar to untreated control plants. Palms with the most severe Fe chlorosis also had the highest levels of leaf spot disease caused by Exserohilum rostratum (Drechs.) K.J. Leonard & E.G. Suggs. Neither chlorosis severity nor leaf spot severity was correlated with total leaf Fe concentration.

Full access

Timothy K. Broschat

`Petite Yellow' dwarf ixoras (Ixora spp.) were grown in an alkaline substrate (3 limestone gravel: 2 coir dust) or a poorly aerated composted seaweed substrate to induce iron (Fe) chlorosis. Chlorotic plants were fertilized every 2 months with soil applications of 0.1 g (0.0035 oz) Fe per 2.4-L (0.63-gal) pot using ferrous sulfate, ferric diethylenetriaminepentaacetic acid (FeDTPA), ferric ethylenediaminedi-o-hydroxyphenylacetic acid (FeEDDHA), Hampshire Iron (FeHEDTA plus FeEDTA), ferric citrate, iron glucoheptonate, or DisperSul Iron (sulfur plus ferrous sulfate). Additional chlorotic ixoras growing in a substrate of 3 sedge peat: 2 cypress sawdust: 1 sand were treated every 2 months with foliar sprays of Fe at 0.8 g·L-1 (0.11 oz/gal) from ferrous sulfate, FeDTPA, FeEDDHA, ferric citrate, or iron glucoheptonate. Only chelated Fe sources significantly improved ixora chlorosis when applied to the soil, regardless of whether the chlorosis was induced by an alkaline substrate or a poorly aerated one. As a foliar spray, only FeDTPA was effective in improving chlorosis in dwarf ixora. Leaf Fe content either showed no relationship to plant color or was negatively correlated with plant chlorosis ratings.

Free access

Joseph P. Albano

FeEDTA, FeDTPA, FeEDDHA, or FeSO 4 . Leachate solution spectral properties and chemistry differed, however, between these Fe chelates. It was found that FeEDDS maximally absorbed at a shorter wavelength (238 nm) than either FeEDTA (258 nm) or FeDTPA (260

Free access

Ritu Dhir, Richard L. Harkess and Guihong Bi

temperature treatment for a split plot experimental design split by temperature. Plants were placed in the box frames on 29 Oct. 2005 and root-zone temperature treatments started. Iron (Sprint 138, Fe-EDDHA, 6% Fe; Becker Underwood Inc., Ames, IA) was applied

Free access

Shengrui Yao, Steve Guldan, Robert Flynn and Carlos Ochoa

. 2012; and 22 June 2013. For each plot, 15 readings were taken on newly expanded leaves, and the results were averaged. To correct leaf chlorosis, 6% chelated iron (FeEDDHA) was applied twice through fertigation, on 5 Aug. and 15 Aug. 2011, at 0.33 g

Free access

Ron M. Wik, Paul. R. Fisher, Dean A. Kopsell and William R. Argo

Two experiments were completed to determine whether the form and concentration of iron (Fe) affected Fe toxicity in the Fe-efficient species Pelargonium ×hortorum `Ringo Deep Scarlet' L.H. Bail. grown at a horticulturally low substrate pH of 4.1 to 4.9 or Fe deficiency in the Fe-inefficient species Calibrachoa ×hybrida `Trailing White' Cerv. grown at a horticulturally high substrate pH of 6.3 to 6.9. Ferric ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA), ferric ethylenediamine tetraacetic acid (Fe-EDTA), and ferrous sulfate heptahydrate (FeSO4·7H2O) were applied at 0.0, 0.5, 1.0, 2.0, or 4.0 mg ·L–1 Fe in the nutrient solution. Pelargonium showed micronutrient toxicity symptoms with all treatments, including the zero Fe control. Contaminant sources of Fe and Mn were found in the peat/perlite medium, fungicide, and lime, which probably contributed to widespread toxicity in Pelargonium. Calibrachoa receiving 0 mg Fe/L exhibited severe Fe deficiency symptoms. Calibrachoa grown with Fe-EDDHA resulted in vigorous growth and dark green foliage, with no difference from 1 to 4 mg·L–1 Fe. Using Fe-EDTA, 4 mg Fe/L was required for acceptable growth of Calibrachoa, and all plants grown with FeSO4 were stunted and chlorotic. Use of Fe-EDDHA in water-soluble fertilizer may increase the upper acceptable limit for media pH in Fe-inefficient species. However, iron and Mn present as contaminants in peat, irrigation water, or other sources can be highly soluble at low pH. Therefore, it is important to maintain a pH above 6 for Fe-efficient species regardless of applied Fe form or concentration, in order to avoid the potential for micronutrient toxicity.

Free access

B. Castillo, M.A.L. Smith, D.L. Madhavi and U.L. Yadava

Interactions between irradiance levels (5–40 μmol·m-2·s-1) and iron chelate sources (FeEDTA and FeEDDHA) were observed for Carica papaya shoot tip cultures during both the establishment and proliferation stages of microculture. Reduced levels of irradiance (5 μmol·m-2·s-1) favored shoot tip establishment regardless of the source or level of iron. However, the highest percentage of successful explant establishment (100%), and significantly greater leaf length (1.16 cm; over double the size attained in any other treatment), resulted when a low concentration of FeEDTA alone was used at low irradiance. During the subsequent shoot proliferation stage, however, higher irradiance levels (30 and 40 μmol·m-2·s-1) were required, and FeEDTA failed to support culture growth when used as the sole iron source. The highest multiplication rates (3.6 shoots per explant) and leaf chlorophyll concentrations (0.22 mg/g fresh mass), and significantly improved shoot quality were achieved at 30 μmol·m-2·s-1 irradiance when both iron chelate formulations were combined (each at a 100 μM concentration) in the proliferation medium. Chemical names used: benzylamino purine (BA); ferric disodium ethylenediamine tetraacetate or FeNa2EDTA (FeEDTA); ferric monosodium ethylenediamine di(o-hydroxyphenylacetate), (FeNaEDDHA) or Sequestrene 138Fe (FeEDDHA); indoleacetic acid (IAA); 1-naphthaleneacetic acid (NAA).