Search Results

You are looking at 1 - 10 of 33 items for :

  • Refine by Access: All x
Clear All
Free access

Joseph P. Albano and William B. Miller

Excised roots of `First Lady' marigold (Tagetes erecta L.) grown in an aerated 0 Fe nutrient solution had Fe(III)-DTPA reductase activity 14-fold greater, and an enhanced ability to acidify the rhizosphere than plants grown in a solution containing 0.018 mm (1 ppm) Fe-DTPA. Reductase activity and rhizosphere acidification of plants grown in 0.018 and 0.09 mm Fe-DTPA were similar. Manganese concentration in leaves of plants grown in the 0 Fe treatment was 2-fold greater than in leaves of plants grown in the 0.018 mm Fe-DTPA treatment. These results indicated that `First Lady' marigold is an Fe-efficient plant that possesses both an inducible or adaptive reductase system and the ability to acidify the rhizosphere, and that these Fe-efficiency reactions do not occur when Fe is sufficient. Chemical name used: ferric diethylenetriaminepentaacetic acid, monosodium salt (Fe-DTPA).

Free access

Joseph P. Albano and William B. Miller

The susceptibility of seven African marigold (Tagetes erecta L.) cultivars to iron toxicity was assessed. Plants were grown in a greenhouse in a soilless medium and Fe-DTPA was incorporated into the nutrient solution at either 0.018 mmol·L-1 (low) or 0.36 mmol·L-1 (high). Symptoms of Fe toxicity (bronze speckle disorder in marigold characterized by chlorotic and necrotic speckling and downward leaf cupping and curling) developed only in the high-Fe treatment. The concentration of Fe in leaves in the high-Fe treatment was 5.6 and 1.7 times as great as in the low-Fe treatment for `Orange Jubilee' and `Discovery Orange', respectively. Based upon the percentage of plants affected and leaf symptom severity, relative cultivar susceptibility to Fe toxicity was Orange Jubilee > First Lady > Orange Lady > Yellow Galore > Gold Lady > Marvel Gold > Discovery Orange. Chemical names used: ferric diethylenetriaminepentaacetic acid, disodium salt dihydrate (Fe-DTPA).

Full access

Brent K. Harbaugh

Interveinal chlorosis of lower (oldest) leaves followed by development of interveinal necrotic spots, marginal necrosis, downward cupping of leaves, and leaf abscission were symptoms of a disorder commonly observed during production of potted pentas. The disorder was determined to be an Fe toxicity problem associated with accumulation of extremely high levels of foliar Fe (649 to 1124 ppm). Cultivars varied in their response to soil-applied Fe-DTPA chelate solutions: `Starburst', `Mauve' and `Ruby Red' were very susceptible, `Pink Profusion' was intermediate, and `White', `Lavender Delight', and `Pink Rose' were resistant. Potted plant production in a root medium with an initial pH of 6.7 ± 0.1 and a end pH of 6.4 ± 0.2 reduced the accumulation of foliar Fe to levels ranging from 59 to 196 ppm and prevented development of significant visual symptoms for all Cultivars.

Free access

Joseph P. Albano and William B. Miller

Marigolds under iron deficiency stress exhibited characteristics associated with iron efficiency (e.g. induced reductase and rhizosphere acidification). Ferric reduction rates for roots of the minus Fe-DTPA treatment group was 0.97 μmol·g FW-1·h-1, 14 times greater than the 17.9 μM Fe-DTPA treatment group. Excised primary lateral roots from the minus Fe-DTPA and 17.9 μM Fe-DTPA treatment groups embedded in an Fe reductase activity gel visually confirmed an increased Fe reduction rate for the minus Fe-DTPA treatment group. The pH of the nutrient solution one week after initiation of treatments indicated that the minus Fe-DTPA treatment group was 1 pH unit lower than the 17.9 μM Fe-DTPA treatment group at 4.1 and 5.1, respectively.

Free access

Joseph P. Albano, William B. Miller, and Mary C. Halbrooks

A specific physiological disorder, bronze speckle (J.P.A.'s nomenclature), was consistently induced in `First Lady' and `Voyager' marigold with Fe-DTPA concentrations greater than 0.018 mm Fe-DTPA (1 ppm) applied to a soilless medium. The disorder was characterized by specific symptomology distinguished visually by speckled patterns of chlorosis and necrosis, and downward curling and cupping of leaves. The percentage of total leaf dry weight affected with symptoms generally increased with increasing Fe-DTPA treatments. Symptomatic leaf tissue had a greater Fe concentration than corresponding asymptomatic leaf tissue. Leaf Mn concentrations in symptomatic and asymptomatic tissue were similar. In `First Lady', older leaf tissue accumulated more total Fe and was associated with more severe symptoms than younger tissue. Media leachate Fe concentrations increased over 6 weeks and were larger at greater Fe-DTPA treatments. Adjustment of nutrient solution pH to 4.0, 5.25, or 6.5 did not alter media pH, nor did it prevent disorder symptoms. Application of Fe-DTPA containing nutrient solution to a soilless medium resulted in leachate Fe levels 3 times greater than for FeSO4 treatments. Chemical names used: ferric diethylenetriaminepentaacetic acid, monosodium salt (Fe-DTPA).

Free access

Gary R. Bachman and Mary C. Halbrooks

The role of Fe DTPA (Diethylenetriaminepentaacetic acid) in the occurrence of a specific physiological disorder affecting the leaves of cutting geranium was investigated. Industry reports indicate that affected leaves have excessively high concentrations of Fe and sometimes Mn. Symptoms of the disorder first affect maturing leaves, and may in severe cases affect immature leaves. Symptoms progress from marginal/interveinal chlorosis and necrosis, to affect whole leaf necrosis. Rooted cuttings were grown in a soil-less peat based media, with Fe DTPA concentrations of 1, 5, 15, and 20 ppm. Iron and manganese leaf concentrations were significantly higher in symptom than in non-symptom tissue and increased as Fe DTPA treatment level increased. As Fe DTPA treatment level increased there was a significant increase in dry weight of symptom tissue and a decrease in non-symptom tissue dry weight. Plants grown in media amended with dolomite (pH> 5.8) had similar degrees of symptom occurrence compared to plants grown in unamended media (pH ≈ 5.4).

Full access

Paul R. Fisher, Ron M. Wik, Brandon R. Smith, Claudio C. Pasian, Monica Kmetz-González, and William R. Argo

The objective was to evaluate and compare foliar spray and soil drench application methods of iron (Fe) for correcting Fe deficiency in hybrid calibrachoa (Calibrachoa × hybrida) grown in a container medium at pH 6.9 to 7.4. Untreated plants showed severe chlorosis and necrosis, stunting, and lack of flowering. An organosilicone surfactant applied at 1.25 mL·L-1 (0.160 fl oz/gal) increased uptake of Fe from foliar applications of both ferrous sulfate (FeSO4) and ferric ethylenediamine tetraacetic acid (Fe-EDTA). Foliar sprays at 60 mg·L-1 (ppm) Fe were more effective when Fe was applied as Fe-EDTA than FeSO4. Increasing Fe concentration of foliar sprays up to 240 mg·L-1 Fe from Fe-EDTA or 368 mg·L-1 Fe (the highest concentrations tested) from ferric diethylenetriamine pentaacetic acid (Fe-DTPA) increased chlorophyll content compared with lower spray concentrations, but leaf necrosis at the highest concentrations may have been caused by phytotoxicity. Drenches with ferric ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA) at 20 to 80 mg·L-1 Fe were highly effective at correcting Fe-deficiency symptoms, and had superior effects on plant growth compared with drenches of Fe-DTPA at 80 mg·L-1 Fe or foliar sprays. Efficacy of Fe-DTPA drenches increased as concentration increased from 20 to 80 mg·L-1 Fe. An Fe-EDDHA drench at 20 to 80 mg·L-1 Fe was a cost-effective option for correcting severe Fe deficiency at high medium pH.

Free access

Joseph P. Albano and William B. Miller

Our objective was to determine the effects on plant growth and physiology that a photodegraded Fe-chelate containing lab-prepared nutrient solution would have when used in plant culture. Plants grown hydroponically in the irradiated Fe-DTPA containing nutrient solution had ferric reductase activity 2.2 times greater, foliar Fe level 0.77 times less, and foliar Mn level 1.9 times greater than in plants grown in an identical but non-irradiated solution, indicating that plants growing in the irradiated solution were responding to Fe deficiency stress with physiological reactions associated with Fe efficiency. The youngest leaves of plants that were grown in the irradiated solution had symptoms of Mn toxicity. Restoration of the irradiated solution by removing the precipitated Fe by centrifugation and adding fresh Fe-chelate resulted in plants that were, in general, not different from those grown in the non-irradiated solution (control).

Free access

R.J. Cooper and L.A. Spokas

Supplemental Fe fertilization to improve turfgrass quality has become an increasingly common practice on many turfgrass areas. Field studies were conducted to evaluate the nutrient uptake, growth, and quality of Kentucky bluegrass (Pea pratensis L.) treated with chelated Fe sources. Iron sources were evaluated over 2 years at 1.5,3.0, and 6.0 kg Fe/ha applied in May, July, and September of each year. Turf treated with an iron orthophosphate citrate source (Fe-PC) exhibited more foliar growth than nontreated turf on seven of 11 sampling dates during the study. Iron citrate sources [Fe-C(EI) and Fe-C(T)] and Fe-DTPA applications resulted in similar growth rates, never stimulating growth more than the Fe-PC source and rarely increasing growth compared with nontreated turf. Increasing the Fe rate within source did not typically increase growth. Iron-treated turf exhibited quality superior to nontreated turf throughout the study with all sources performing comparably. Increasing Fe rate did not result in a corresponding increase in quality, due to greater phytotoxicity at higher rates. Although several sources produced notable phytotoxicity at 6.0 kg Fe/ha, repeated application did not decrease turfgrass density. Iron tissue content increased linearly with rate on four of five sampling dates during the study however, no source resulted in tissue Fe content significantly higher than other sources. Application of sources containing supplemental P and/or K did not increase tissue P or K content. Chemical names used: iron citrate (Fe-C); iron diethvlenetriamine pentaacetate (Fe-DTPA); iron orthophosphate citrate (Fe-PC).

Free access

Pamela R. Mattis and David R. Hershey

Rose periwinkle (C. roseus `Little Linda'), a common bedding plant, grown in Hoagland solution #1 with Fe-EDTA at 5 mg/L Fe had normal shoot morphology, but abnormal root morphology. The primary root was twisted and lateral roots were extremely stunted with dichotomous branching. Over a dozen other bedding and foliage plant species had normal root morphology when grown in an identical solution, and cuttings from periwinkle with abnormal roots produced normal roots when rooted in 2 mM CaCl2. When these rooted cuttings were grown in Fe free Hoagland solution #1, root morphology was normal, indicating that the Fe-EDTA caused the problem. Seedlings were then grown in solution for 30 days with Fe supplied as Fe-EDTA (both 5 mg/L and 1 mg/L Fe), Fe-DPTA (5 mg/L and 1 mg/L Fe), Fe-EDDHA (2.75 mg/L and 0.55 mg/L Fe) or Fe2O3 (1 g/L). Solution pH for all were in a normal range of 4.8 - 5.6 Only the seedlings grown with Fe2O3, Fe-EDTA (5 mg/L Fe) and Fe-DTPA (5 mg/L Fe) developed abnormal root structure. All others had normal roots.