Search Results

You are looking at 1 - 10 of 138 items for :

  • "Daucus carota L." x
  • Refine by Access: All x
Clear All
Free access

Yeh-Jin Ahn and Na-Hyun Song

under various abiotic stresses, where DcHsp17.7 in carrot ( Daucus carota L.) was expressed under conditions of heat ( Kim and Ahn, 2009 ), cold ( Song and Ahn, 2010 ), and salinity ( Song and Ahn, 2011 ). Furthermore, the heterologous expression of

Free access

Hanseul Park and Yeh-Jin Ahn

Center for Biotechnology Information (NCBI) accession no.: NC_000913.2] promoter, an Hsp17.7 gene from carrot ( Daucus carota L.; NCBI accession no.: X53851) and flippase-recombinase targets (Frt) cassette were generated by polymerase chain reaction

Open access

Aneela Nijabat, Adam Bolton, Muhammad Mahmood-ur-Rehman, Adeel Ijaz Shah, Rameez Hussain, Naima Huma Naveed, Aamir Ali, and Philipp Simon

Carrot ( Daucus carota L.) is a cross-pollinating, diploid (2 n = 18), biennial root vegetable belonging to the Apiaceae. It ranks among the top-ten vegetable crops globally and is an important source of prebiotics, minerals, fiber, and especially

Free access

Michael E. Bartolo and Frank C. Schweissing

Parts of Colorado receive more hail than almost any other area in the nation. Severe storms can injure crop tissue and, thus, lower yield and predispose the crop to disease infection. Our study was conducted to determine the yield and quality response of carrot (Daucus carota L.) to simulated storm damage during different periods of plant development. We removed 33% and 67% of the carrot foliage at four dates, spaced 10 days apart, during the middle of the growing season. In 1997 and 1998, 67% defoliation significantly reduced total and marketable yields more than did 33% defoliation. Total yield components, length and diameter, were similarly affected. Defoliation, in general, decreased yield the greatest when it when it occurred at the later stages of development. Carrot foliage continued to develop and grow after all defoliation events. Nonetheless, moderate (33%) and severe (67%) foliage loss reduced marketable yield and yield components of carrots.

Free access

Min Wang and I.L. Goldman

The root-knot nematode (M. hapla Chitwood) poses a threat to carrot (Daucus carota L.) production in the United States. Little information is available concerning the genetic control of nematode resistance in carrot. Crosses between two inbreds, a resistant genotype (R1) and susceptible genotype (S1) identified in previous screening tests of carrot were studied in the F2 and BC1 generations to determine the heritability of resistance to the root-knot nematode. Seedlings of F2 (R1/S1), BC1S1, and BC1R1 generations were evaluated for their responses to infestation of M. hapla Chitwood based on gall number per root, gall rating per root, and root rating per root in a greenhouse experiment conducted during 1994. Narrow-sense heritabilities were calculated according to the method of Warner (1952). Narrow-sense heritability was 0.16 for resistance based on gall number, 0.88 for resistance based on gall rating, and 0.78 for resistance based on root rating. This information may be of importance to geneticists and carrot breeders for the development of nematode-resistant carrot cultivars.

Full access

Adam Bolton, Aneela Nijabat, Muhammad Mahmood-ur-Rehman, Naima Huma Naveed, A.T.M. Majharul Mannan, Aamir Ali, Mohamed A. Rahim, and Philipp Simon

the productivity of most vegetables have yet not been well-characterized ( Fahad et al., 2017 ; Mahmood et al., 2017 ). It may be anticipated that cool-season vegetables, like carrot, are especially sensitive to heat stress. Carrot ( Daucus carota L

Free access

Adam Bolton and Philipp Simon

. Fortunately, screening for salinity tolerance at the germination stage is one of the most rapid and economical stages of development to evaluate a large number of diverse germplasm accessions for tolerance. Carrot ( Daucus carota L.; 2 n = 2 x = 18) is an

Free access

Mingbo Qin, Chiwon W. Lee, Alex Y. Borovkov, and Murray E. Duysen

A study was initiated to characterize key enzymes that influence sweetness in carrot (Daucus carota L.) roots. Sucrose synthase (SS), sucrose phosphate synthase (SPS), and UDP-glucose pyrophosphorylase (UDPL) genes were isolated from potato (Solanum tuberosum L.) and cloned in an anti-sense orientation into Agrobacterium tumefaciens Bin19, which has a CaMV 35S promoter. Seedling hypocotyl sections of selected carrot lines were pre-incubated on B5 medium for 2 days, co-cultivated with A. tumefaciens Bin 19 for additional 3 days, and then transferred to a modified B5 medium containing 50 g/mL kanamycin and 400 g/mL carbenicillin. In 4 weeks, 18.6%, 33.3%, and 26.7% of the cultures from a breeding line (W204-C) were found to be transformed, respectively, with SS, SPS, and UDPL as determined by kanamycin resistance. In contrast, no kanamycin-resistant calli were obtained from a commercial cultivar (Navajo) in these transformation studies. The transformed calli proliferated in the medium containing 50 g/mL kanamycin and 400 g/mL carbenicillin, whereas non-transformed calli died in the same medium. These transformed calli are currently being used to regenerate plants via asexual embryogenesis using a suspension culture. The influence of these additional genes on sugar metabolism and accumulation in root tissues of transformed carrots will be characterized in the future.

Free access

James M. Bradeen, Inga C. Bach, Mathilde Briard, Valérie le Clerc, Dariusz Grzebelus, Douglas A. Senalik, and Philipp W. Simon

A sample of 124 Daucus carota L. accessions, including cultivated carrot [D. carota ssp. sativus (Hoffm.) Arcangeli] and related wild subspecies, using a variety of molecular markers was examined. Represented within the samples were wild accessions from 18 countries, 14 of 16 major root types of European origin, and examples of major North American and Asian cultivated carrot types. Amplified fragment length polymorphism (AFLP) and inter-simple sequence repeat (ISSR) markers revealed extensive variation within D. carota. Although cultivated carrot and wild D. carota subspecies can cross freely, cultivated and wild carrots clustered separately, supporting the possibility that human selection for desirable horticultural traits has artificially reduced gene flow between cultivated and wild forms. Our analyses support the likelihood that North American D. carota populations arose due to introduction of weedy materials rather than escape of cultivated forms. With the exception of wild vs. cultivated types, no genetic alliances were evident in dendrogram topology. Furthermore, between and even within nonmapped marker classes, dendrogram topology predictions were not consistent. Generally poor correlations among root types, geographic origin, mitochondrial, plastid, and specific nuclear diversity and AFLP/ISSR data were also observed. We concluded that genetic diversity in carrot is extensive and relatively nonstructured in nature.

Free access

Claire H. Luby, Rachael Vernon, Hiroshi A. Maeda, and Irwin L. Goldman

). Carrots ( Daucus carota L. var. sativa ), well known for high concentrations of provitamin A carotenoids, also contain vitamin E. Koch and Goldman (2005) and Luby et al. (2014) have reported several tocochromanols in carrot, including α-, β- and γ