Search Results

You are looking at 1 - 10 of 18 items for :

  • "Cucurbita maxima × C. moschata" x
  • Refine by Access: All x
Clear All
Open access

Wenjing Guan, Dean Haseman, and Dennis Nowaskie

( Table 4 ). Table 3. Early-season yields (yield before 15 May) of nongrafted cucumbers, and grafted cucumbers with Cucurbita moschata , squash interspecific hybrid ( Cucurbita maxima × C. moschata ), and figleaf gourd ( Cucurbita ficifolia ) rootstocks

Full access

Shawna L. Daley, Jeffrey Adelberg, and Richard L. Hassell

Application of fatty alcohol to rootstocks used for vegetable grafting has been shown to increase the efficiency of producing grafted transplants by controlling cucurbit (Cucurbitaceae) rootstock meristematic regrowth and by allowing the rootstocks to accumulate carbohydrates, especially starch, over time in the hypocotyl and cotyledon. A grafting experiment was conducted to determine the effect of increased carbohydrates on survival of watermelon (Citrullus lanatus) grafts using standard grafting procedures. ‘Carnivor’ interspecific hybrid squash (Cucurbita maxima × C. moschata) and ‘Macis’ bottle gourd (Lagenaria sicereria) rootstocks at 1, 7, 14, and 21 days after fatty alcohol treatment were grafted with ‘Tri-X 313’ seedless watermelon using the one-cotyledon method. Graft survival on ‘Macis’ rootstock was acceptable or significantly increased up to day 14, with a slight decrease at day 21. Graft survival on ‘Carnivor rootstock was also acceptable up to day 21, with a significant increase between days 1 and 7. The second experiment was conducted to determine whether the increased carbohydrates provide sufficient energy to successfully graft without the rootstock cotyledon, a method that has previously shown inconsistent results. Graft survival was improved by 90% using treated ‘Carnivor’ rootstock 7 days after fatty alcohol treatment and ‘Macis’ rootstock 14 days after fatty alcohol treatment. Adoption of the hypocotyl-only graft method in commercial production may increase efficiency by better using greenhouse space and could decrease disease probability by removing the cotyledons before grafting.

Open access

Janel L. Ohletz and J. Brent Loy

for plants grown in greenhouses and other protected structures. The most common rootstocks used in melon grafting are interspecific hybrid squash [ Cucurbita maxima × C. moschata ( King et al., 2010 )]. Because of the vigorous root systems and

Full access

Shawna L. Daley, William Patrick Wechter, and Richard L. Hassell

Fatty alcohol treatments can be used to eliminate the meristem of cucurbit (Cucurbitaceae) rootstocks, which prevents regrowth when grafting, but the effects of the treatment on the rootstock have not been documented. Two rootstock types, ‘Emphasis’ bottle gourd (Lagenaria siceraria) and ‘Carnivor’ interspecific hybrid squash (Cucurbita maxima × C. moschata) commonly used in watermelon (Citrullus lanatus) grafting significantly increased in cotyledon and hypocotyl size over 21 days after treatment (DAT) with a 6.25% fatty alcohol emulsion. There was a significant increase in total soluble sugar (glucose, sucrose, and fructose) content for each rootstock hypocotyl and cotyledon. Starch concentrations of hypocotyls and cotyledons also increased significantly in both rootstocks. This increase in stored energy could greatly increase the success rate of the grafting process. Increased rootstock energy reserves could overcome the need for keeping the rootstock cotyledon intact when grafting.

Free access

Wenjing Guan and Xin Zhao

Grafting has been used for controlling certain soilborne diseases and improving abiotic stress tolerance in muskmelon (Cucumis melo) production. Grafting methods may vary considerably among geographic regions and nurseries, while excision of rootstock roots before graft healing may also be practiced, which allows root regeneration of the grafted plants. In this greenhouse study, four grafting methods including hole insertion, one-cotyledon, noncotyledon, and tongue approach methods were examined for their impacts on plant growth and root characteristics of ‘Athena’ muskmelon grafted onto ‘Strong Tosa’ interspecific hybrid squash rootstock (Cucurbita maxima × C. moschata). Nongrafted rootstock and scion plants were included as controls. Both the grafted and nongrafted plants were examined with or without root excision. The practice of root excision was unsuccessful with the tongue approach method, while it did not exhibit significant effects on graft quality and growth of plants grafted with the one-cotyledon and hole insertion methods. Grafted plants with root excision started to show active and rapid root regeneration at 8 days after grafting (DAG) and reached similar root length and surface area as the root-intact plants at 16 DAG. Plants grafted with the noncotyledon method showed a different root growth pattern with decreased root length and surface area at 16 DAG. As a result, this method reduced the quality of grafted plants. No significant differences in plant growth characteristics were observed among the hole insertion, one-cotyledon, and tongue approach grafted plants.

Full access

Sahar Dabirian and Carol A. Miles

The one-cotyledon splice grafting method is commonly used for watermelon (Citrullus lanatus) because it is relatively rapid and there is less rootstock regrowth than with other grafting methods. However, plants must rely on moisture in the air for survival during at least the first 4 days after grafting. In 2015 and 2016, greenhouse experiments were conducted to investigate if application of commercial stomata-coating and stomata-closing antitranspirant products, applied 1 day before grafting to both scion and rootstock seedlings, could increase the survival of watermelon transplants grafted using the one-cotyledon method. ‘TriX Palomar’ watermelon was grafted onto rootstock ‘Tetsukabuto’ (Cucurbita maxima × C. moschata) in Expt. 1, and onto rootstock ‘Emphasis’ (Lagenaria siceraria) in Expt. 2. The survival of grafted watermelon differed because of experiment (P = 0.0003), antitranspirant treatment (P < 0.0001), and experimental repeat (P < 0.0001). The survival of ‘TriX Palomar’ grafted onto ‘Tetsukabuto’ was greatest for plants treated with the stomata-coating + stomata-closing antitranspirants (92% to 100%), followed by the stomata-closing antitranspirant (79% to 97%), water (72%), and the stomata-coating antitranspirant (50% to 60%). For ‘TriX Palomar’ grafted onto ‘Emphasis’, plants treated with the stomata-closing antitranspirant had the greatest survival (87% to 97%), followed by stomata-coating + stomata-closing antitranspirants (84% to 94%), the stomata-coating antitranspirant (50% to 67%), and water (53% to 68%). In Expt. 3, stomatal conductance (g S) was similar for both ‘TriX Palomar’ and ‘Emphasis’ seedlings before treatment application, but differed because of the treatments 1 and 2 days after application. Stomatal conductance did not change for ‘TriX Palomar’ seedlings after application of the stomata-coating antitranspirant or water, or for ‘Emphasis’ seedlings after application of the stomata-coating antitranspirant. Stomatal conductance of ‘TriX Palomar’ seedlings decreased 57% to 62% after application of the stomata-closing antitranspirant and decreased 48% to 60% after application of the stomata-coating + stomata-closing antitranspirants. Stomatal conductance for ‘Emphasis’ seedlings increased 37% after water application, and decreased 58% to 68% after application of the stomata-closing antitranspirant, and decreased 42% to 45% after application of the stomata-coating + stomata-closing antitranspirants. The survival rate of grafted ‘TriX Palomar’ transplants was increased nearly 30% by application 1 day before grafting of the commercial stomata-closing antitranspirant or stomata-coating + stomata-closing antitranspirants in this study. Increase in grafting success is likely due to a reduction in transpiration that occurs when the stomata-closing antitranspirant is applied to the seedlings before grafting.

Open access

Pinki Devi, Penelope Perkins-Veazie, and Carol A. Miles

Separately, grafting and the use of plastic mulch can increase yield, quality, and early harvest of watermelon (Citrullus lanatus), especially when plants are under biotic and/or abiotic stress. A 2-year field study was conducted to evaluate the combination of four different rootstocks and two types of plastic mulch (black and clear) on date of watermelon first flowering, fruit ripening, yield, and fruit quality when plants were exposed to Verticillium dahliae. Seedless watermelon cv. Secretariat was grafted onto rootstocks Lagenaria siceraria cv. Pelop, Benincasa hispida cv. Round, and two interspecific hybrid squash rootstocks Cucurbita maxima × C. moschata cvs. Super Shintosa and Tetsukabuto, with nongrafted ‘Secretariat’ as the control. Fruit were harvested 0, 7, and 14 days after both the leaflet and tendril attached to the fruit pedicel were completely dry (fruit considered to be physiologically mature). The area under the disease progress curve (AUDPC) values for verticillium wilt were not different for mulch type in either year, although the overall AUDPC value was greatly reduced in the four grafted treatments (227) compared with nongrafted (743). There was no difference in days to male or female flowering due to mulch type or year, and rootstock did not affect first flowering of male flowers. Female flowering was 14 and 11 days later in 2018 and 2019, respectively, for ‘Secretariat’ grafted onto bottle gourd ‘Round’ compared with ‘Secretariat’ grafted onto ‘Tetsukabuto’. Female flowering of ‘Secretariat’ on ‘Round’ was also 7 days later compared with nongrafted ‘Secretariat’ both years. However, days to first harvest was not different with mulch or rootstock and was 92 days after transplanting (DAT) in 2018 and 114 DAT in 2019. There was no difference in yield (fruit number and weight) due to year, harvest date, or mulch, but there was a difference due to grafting. ‘Secretariat’ grafted onto ‘Super Shintosa’ had the greatest total number and weight of fruit per plant (3.7 and 14.8 kg, respectively), and nongrafted ‘Secretariat’ had the lowest (0.7 and 3.2 kg, respectively). Fruit quality attributes hollow heart formation (rating 3.2/5 on average), hard seed count (6 on average), total soluble solids (11% on average), and lycopene content were not different among mulch type, rootstock treatment, or harvest date; however, lycopene content did differ due to year (52.44 and 32.51 µg·g−1 in 2018 and 2019, respectively). Flesh firmness was highest for watermelon grafted onto ‘Super Shintosa’ rootstock (6.7 N) and lowest for nongrafted watermelon (4.3 N). Overall, rootstocks reduced verticillium wilt severity and increased fruit yield whereas mulch had no effects, and 5 V. dahliae colony forming units (cfu)/g of soil may be the minimum level for impact on watermelon fruit yield.

Free access

Xin Zhao, Qianru Liu, M. Tatiana Sanchez, and Nicholas S. Dufault

Fusarium wilt of watermelon can be effectively managed by grafting with resistant rootstocks. Excision and regeneration of grafted seedling roots is a common practice among cucurbit-grafting nurseries that has not been thoroughly examined. The objectives of this study were to compare the performance of grafted and nongrafted watermelon plants under both greenhouse and field conditions when inoculated with Fusarium oxysporum f. sp. niveum (FON) race 2, and assess the effect of root excision on growth of grafted plants with Cucurbita moschata and Cucurbita maxima × C. moschata rootstocks. Two greenhouse experiments (Fall 2015 and Spring 2016) and one field trial (Spring 2016) of seedless watermelon ‘Melody’ were conducted in this study. In both greenhouse experiments, inoculated, nongrafted watermelon plants showed a significantly higher percentage of recovered Fusarium spp. colonies (70% to 75%) compared with grafted treatments (0% to 7.5%). Some plant growth measurements, including the longest vine length and aboveground fresh and dry weight, indicated less vigorous growth for nongrafted plants compared with the grafted treatments. Significantly higher percent recovery of Fusarium spp. below the graft union was observed in the grafted plants with root excision and regeneration treatment (3.7%) in contrast to the intact root treatment (0.5%), suggesting that the root excision method may possibly create entry points for FON infections. Overall, the root excision treatment showed little influence on aboveground growth and root characteristics of grafted plants. Yield of grafted watermelon with FON inoculation in the fumigated field trial was significantly higher than that of noninoculated, nongrafted ‘Melody’ (NGM) control as reflected by the increase of fruit number and size. Averaged over all the grafted treatments, the increase in marketable fruit number and weight reached 108.3% and 240.9%, respectively, and the total fruit number and weight increase was at 80.0% and 237.2%, respectively. However, grafted plants also exhibited greater levels of root-knot nematode infestation as indicated by the significantly higher root galling ratings. Results from this study demonstrated that grafting with squash rootstocks can effectively limit FON colonization in seedless watermelon plants, although more research in rootstock selection and testing is needed to optimize the use of grafted plants for improving plant growth and fruit yield.

Free access

Judy A. Thies, Jennifer J. Ariss, Richard L. Hassell, Sharon Buckner, and Amnon Levi

and Hassell, 2010 ). Squash hybrid ( Cucurbita maxima × C. moschata ) and bottle gourd ( Lagenaria siceraria ) rootstocks are among the most commonly used rootstocks for grafting watermelon and other cucurbits because these species are not

Free access

Amnon Levi, Judy A. Thies, Patrick W. Wechter, Mark Farnham, Yiqun Weng, and Richard Hassell

), the hybrid squash ( Cucurbita maxima × C. moschata ) rootstock ‘Shintosa Camel’ (SC), or the bottle gourd ( Lagenaria siceraria ) rootstock ‘Emphasis’ and self-grafted (M-SG), and non-grafted ‘Melody’ (M-NG) in a field experiment in Charleston, SC