Search Results

You are looking at 1 - 10 of 822 items for :

  • Refine by Access: All x
Clear All
Free access

Jie Li, Scott M. Leisner, and Jonathan Frantz

The transition metal copper (Cu) is an essential element for all organisms. Copper functions as a cofactor within plant cells in a variety of physiological processes, including electron transfer in photosynthesis, mitochondrial respiration

Free access

Jonathan M. Frantz, Sushant Khandekar, and Scott Leisner

Worldwide, some soils are high in Cu leading to the natural occurrence of Cu toxicity ( Alonso et al., 2000 ; Cook et al., 1997 ). Most reported Cu toxicity is the result of anthropogenic sources including pesticide use ( Hoang et al., 2009 ) and

Free access

Chen Chen, Meng-Ke Zhang, Kang-Di Hu, Ke-Ke Sun, Yan-Hong Li, Lan-Ying Hu, Xiao-Yan Chen, Ying Yang, Feng Yang, Jun Tang, He-Ping Liu, and Hua Zhang

; Gupta et al., 1993 ). Cu/Zn-SOD is a kind of SOD, which is commonly present in the cytoplasm of eukaryotic cells. It is composed of two subunits which contain one Cu 2+ and one Zn 2+ , respectively. Some progress has been made in the research of Cu

Free access

Joseph P. Albano

Soluble fertilizers are typically formulated with metal-aminopolycarboxylic acids [APCA (i.e., chelating agents)] of Cu, Fe, Mn, and Zn. These metal–APCA complexes, however, are also applied as single-metal chelate solutions to foliage, soil

Free access

John M. Smagula and Ilse W. Fastook

Two experiments evaluated the Trevett (1972) Cu standard of 7 ppm by raising leaf Cu concentrations in a commercial blueberry field having low (∼4 ppm) leaf Cu concentrations. A foliar spray of Cu Keylate (5% Cu) (Stoller Enterprises, Inc.) in a volume of 627 L·ha-1 applied 0, 0.56 1.12, 1.68, or 2.24 kg·ha-1 of Cu. Ammonium sulfate at 3.1 kg·ha-1 was added to the solutions to enhance Cu absorption. A preemergent soil application of Micromate Calcium Fortified Mix (Stoller Enterprises, Inc.), a micronutrient mixture containing Cu (0.3%), was also tested at 14 kg·ha-1. These 6 treatments were replicated 7 times in a randomized complete-block design in 2001. Treatments were reapplied in 2003 in a split-plot design with Cu treatments as the main plots and an application of DAP at 448 kg·ha-1 as the split plots. In 2001, leaf Cu concentrations increased linearly, up to 12 ppm, with increasing rates of Cu, but Micromate had no effect. Leaf N and P concentrations were below the standards of 1.6% and 0.125%, respectively, and could explain why raising leaf Cu concentrations had no effect on growth or yield. In 2003, DAP corrected the N and P deficiency and leaf Cu concentrations were raised to above the 7 ppm standard with 2.24 kg·ha-1 of Cu, but again, no effect on growth or yield was found. The Cu standard appears to be too high.

Free access

Jason Grabosky and Nina Bassuk

CU soil is a material primarily composed of clay loam soil and crushed stone designed for use under pavement to promote street tree root growth in a durable pavement section, such as sidewalks or parking lots. One concern is the low total soil fraction from which tree roots can meet nutritive demands. At issue is the long-term nutrient management of street trees once the root zone has been rendered inaccessible due to the pavement wearing surface, although in 3-year field tests, there were no differences found between a CU soil material and an agricultural field control. CU soil treatments were produced in a factorial design with a patent applied for processed humate additive, and a nursery production fertilization treatment. Bare-root seedlings of Salix nigra Marsh, Platanus × acerifolia Willd., Ginkgo biloba L., and cell plugs of Ficus benjamina L. were grown in treatment containers for 5 months. A Minolta SPAD-502 was used to evaluate relative chlorophyll content as an indication of leaf tissue nutrient levels. Plant growth as a function of new growth dry weight was calculated. Soil samples were collected at the end of the study and were analyzed to evaluate the impact of humate admixes in nutrient availability. The fertilization treatments positively influenced leaf color and growth for all species. The CU soil control plants displayed significantly lower chlorophyll levels, but overall growth differences were less dramatic—insignificant in some cases. The humate additive did not consistently affect leaf color. The humate additive alone did not affect plant growth, but a significant positive interaction with the fertilizer treatment was evident for Platanus and Ficus. The positive interaction was insignificant in Salix and non-existent in Ginkgo.

Free access

Tom J. Buechel, Edward R. Hasselkus, and Brent H. McCown

Root girdling and deformation are problems that occur in containerized woody ornamentals. Two small trees, the coarse-rooted Magnolia × loebneri `Leonard Messel' (grown in 5-gal containers), and the fine-rooted Crataegus × viridis `Winterking' (6' bare root), were transplanted into 10-gal containers, some of which were treated with “SpinOut” [a latex paint containing 100 g Cu(OH)2/liter]. The plants were grown in a pot-in-pot system for 3 months, after which new roots were analyzed for mat formation and branching pattern. No significant differences in shoot growth that could be attributed to the Cu(OH)2 treatment were observed. The treated containers prevented both root encirclement and reformation of matted roots, and resulted in a more-dense and fibrous root system than that observed in untreated containers. The differences were greatest with the coarse-rooted magnolia. The use of containers treated with copper compounds may be an effective means to reduce root problems commonly observed in modern containerized ornamental production.

Full access

John M. Ruter

A study was conducted with Coreopsis verticillata L. `Moonbeam' and Plumbago auriculata Lam. to evaluate the growth of these perennial plants in 2.6-liter (#1) black plastic containers (BPCs) compared to plants grown in fiber containers with Cu(OH)2 (FCs+) impregnated into the container walls. Coreopsis root and shoot dry weight was unaffected by container type, whereas Plumbago root and shoot dry weight was greater (2.2× and 1.6×, respectively) for plants grown in FCs+ compared to BPCs. The root : shoot ratio of Plumbago increased 30% when plants were grown in FCs+ compared to BPCs. Root circling was effectively controlled for both species grown in the FCs+. FCs remained in salable condition for the duration of the study. In contrast to untreated FCs, FCs+ will have to be removed at transplanting to allow for normal root development.

Free access

M.R. Johanson and C.F. Williams

We conducted a preliminary field study that examines the accumulation of Pb, Cd, Zn, Mn, and Cu in plants and soil along a roadway in Zion National Park. The study is designed to determine the effects of motor traffic on the accumulation of these heavy metals in various plant species and soil during 1 year and to determine if these accumulations decrease as you move away from the roadway. Preliminary results indicate that the amount of Pb, Cd, Zn, Mn, and Cu concentrations found are a function of the number of vehicles passing during a year and the distance from the roadway. Higher concentrations of these heavy metals are found in areas close to the road and in areas where traffic is moving slowly or even stopped. The heavy metal concentrations decreased as the distance from the roadway increased, and the speed of passing vehicles increased.

Free access

Jason Grabosky and Nina Bassuk

CU soil is a material primarily composed of clay loam soil and crushed stone designed for use under pavement to promote street tree root growth in a durable pavement section, such as sidewalks or parking lots. One concern is the low total soil fraction from which tree roots can meet nutritive demands. At issue is the long-term nutrient management of street trees once the root zone has been rendered inaccessible due to the pavement wearing surface, although in 3-year field tests, there were no differences found between a CU soil material and an agricultural field control. CU soil treatments were produced in a fractional factorial design with a patent applied for, processed humate additive, a nursery production fertilization treatment, and a mycorrhizae inoculation package of Pt and various VAM species. The mycorrhizae/fertilizer treatment was eliminated for plant availability restrictions. Bare-root seedlings of Salix nigra Marsh. were grown in treatment containers for 5 months. A Minolta SPAD-502 was used to evaluate relative chlorophyll content as an indication of leaf tissue nutrient levels. Plant growth as a function of root dry weight, shoot dry weight, and shoot: root ratio was analyzed. Soil analyses were conducted on media samples collected at the end of the study to evaluate the impact of humate admixes in nutrient availability. The fertilization treatments positively influenced leaf color, shoot weight, root weight, and shoot: root ratio. There was no impact from the mycorrhizae inoculation on leaf color or growth. There was no impact from the humate additive on leaf color or growth. There were no additive effects found in the treatment levels.