Abstract
Advances attained by the sixth generation of mass selection in sweet potato (Ipomoea batatas (L.) Lam.) were assessed. The objective was to combine multiple resistances to pathogens, nematodes and insects with other desirable production and market qualities. Although progress from 6 single-year cycles of selection was encouraging, a change to 2-year cycles was indicated. Generation 6 contained high frequencies of flowering and seed set, attractive root shape, orange flesh, thin cortex, root specific gravities of about 1.02, acceptable yield, and resistance to fusarium wilt (Fusarium oxysporum f. sp. batatas (Wr.) Snyd. and Hans.), the southern root-knot nematode (Meloidogyne incognita (Kofoid and White) Chitwood) and the following soil insects: the southern potato wireworm (Conoderus falli Lane), the banded cucumber (Diabrotica balteata LeConte), the spotted cucumber beetle (D. undecimpuncta howardi Barber), the elongate flea beetle (Systena elongata (F.)), a white grub (Plectris aliena Chapin), and the sweet-potato flea beetle (Chaetocnema confinis Crotch).
Abstract
Twenty-two sweet potato (Ipomoea batatas (L.) Lam.) breeding lines and 19 open-pollinated offspring from each were used to estimate the heritabilities of 7 measures of soil insect injury. Four measures of injury by the wireworm, Diabrotica spp., and Systena spp. (WDS) complex and h2 (± SE) were: percentage of roots injured, 0.45 ± 0.12; holes per root, 0.32 ± 0.09; severity index, 0.37 ±0.11; and damage score, 0.39 ± 0.17. Two measures of injury by the sweetpotato flea beetle, Chaetocnema confinis Crotch, and h2 were: percentage of roots injured, 0.40 ± 0.07, and tunnels per root, 0.25 ± 0.08. The h2 of percentage of roots injured by all insects was 0.51 ± 0.12. The percentage measures were more easily obtained and were as effective as the other measures under the conditions of natural infestation that occurred in this test. Further advances in selection for high levels of resistance to soil insects are possible within the breeding materials tested.
Abstract
Soil insect root injury to resistant sweet potato [Ipomoea batatas (L.) Lam.] cultivars ‘Regal’ and ‘Southern Delite’ was compared to injury to ‘Jewel’ and ‘Centennial’ in trials with the resistant-standard W-13 and the susceptible-standard SC 1149-19. Injury by three groups of insects was evaluated: the wirewoom-Diabrotica-Systena complex (WDS), which includes the southern potato wireworm (Conoderus falli Lane), the tobacco wireworm (C. vespertinus Fabricius), the banded cucumber beetle (Diabrotica balteata LeConte), the spotted cucumber beetle (D. undecimpunctata howardi Barber), the elongate flea beetle (Systena elongata Fabricius), the pale-striped flea beetle (S. blanda Melsheimer), and S. frontalis Fabricius (a flea beetle); the sweet potato flea beetle (Chaetocnema confinis Crotch.); and a white grub (Plectris aliena Chapin). Relative control estimates were obtained by comparison to the susceptible standard. ‘Regal’ and ‘Southern Delite’ provided good control of all three insect groups with control of all insect injuries of 79.2% and 81.0%, respectively. ‘Jewel’ and ‘Centennial’ were resistant to the sweet potato flea beetle and sustained less damage by WDS than the susceptible standard, but would still be classed as susceptible to WDS. ‘Centennial’ was as susceptible to the white grub as SC 1149-19. The levels of resistance demonstrated for ‘Regal’ and ‘Southern Delite’ would provide growers an alternative to insecticides for the control of these insects.
Abstract
Six sweet potato (Ipomoea batatas (L.) Lam.) breeding lines, W-71, W-115, W-119, W-125, W-149 and W-154, possessing moderate levels of resistance to the sweet potato weevil, Cylas formicarius elegantulus (Summers), in combination with resistances to other released. They have dark orange flesh, relatively high yields and generally acceptable canning and baking qualities.
Abstract
Insect resistance in sweet potatoes (Ipomoea batatas (L.) Lam.) was more effective than fonofos, O-ethyl-S-phenylethylphosphonodithioate, in reducing insect injury to the roots. The most recent resistant line tested did not sustain economic injury from relatively high insect infestations even without the protection of an insecticide. Fonofos at 2.24 and 4.48 kg/ha did not prevent economic injury to the susceptible ‘Goldrush’.
spp. and Plectris aliena Chapin), sweetpotato weevils [ Cylas formicarius (F.)], and the WDS complex (Wireworm, Diabrotica , Systena ). At Charleston, the WDS complex typically includes the southern potato wireworm ( Conoderus falli Lane), the
wireworm ( Conoderus falli Lane), the tobacco wireworm ( Conoderus vespertinus Fabricius), the banded cucumber beetle ( Diabrotica balteata Le Conte), the spotted cucumber beetle ( Diabrotica undecimpunctata howardi Barber), and the elongate flea beetle
rot. Strawberry plants were remarkably free of disease. Potato had some wireworm ( Conoderus falli ) damage the first year in one plot close to the field edge, but no significant disease problems. Finally, there were no significant diseases on carrot
–2019). In total, 314 wireworms were collected in the study ( Table 3 ). The southern potato wireworm ( Conoderus falli ), was the most collected species (82%), followed by gulf wireworm [ Conoderus amplicollis (13%)], peanut wireworm [ Conderus scissus (4