Search Results

You are looking at 1 - 10 of 55 items for :

  • "Compositae" x
  • All content x
Clear All
Full access

Kenneth R. Tourjee, James Harding, and Thomas G. Byrne

The development of gerbera (Gerbera jamesonii H. Bolus ex. Hooker) as a floricultural crop is traced from its collection as a botanical novelty in South Africa to its establishment as a commercial crop in the 1930s. The origin of the cultivated germplasm, G. jamesonii and G. viridifolia (DC) Schultz- Bipontinus, is discussed, as well as breeding work that occurred in Europe and the United States. The contributions of the two species to the cultivated germplasm is unknown. Early breeding in Europe was conducted by RI. Lynch at the Cambridge Botanic Gardens in England, R. Adnet at La Rosarie in Antibes, France; and by C. Sprenger in Italy. In the United States, early work was done at estates in New Jersey by Herrington and Atkins, and by the commercial growers Jaenicke and the J.L. Childs' Seed Co. Establishing the cold hardiness of the crop for temperate climates was an early goal of horticulturists and breeders. Much of the cultivated germplasm can be traced to material that passed through Cambridge and Antibes.

Free access

Lyn A. Gettys and Dennis J. Werner

Stokes aster is a herbaceous perennial native to the southeastern United States. Stokesia is a monotypic genus belonging to the tribe Vernonieae Cass. (family Asteraceae Dumont). The level of genetic diversity within the genus is unknown. The goal of this study was to determine the level of genetic diversity and relatedness among cultivars of stokes aster. The genetic relatedness among 10 cultivars of stokes aster, one accession of Vernonia crinita Raf. (syn. V. arkansana DC.), and one accession of Rudbeckia fulgida Ait. var. sullivantii (Beadle et Boynton) Cronq. `Goldsturm' was estimated using 74 randomly amplified polymorphic DNA (RAPD) primers. Similarity indices suggest that cultivars of stokes aster are very closely related, with values for all pairwise comparisons of cultivars of stokes aster ranging from 0.92 to 0.68. One cultivar, `Omega Skyrocket', had markedly lower similarity indices from the other cultivars, ranging from 0.72 to 0.68. Similarity indices between stokes aster and Vernonia and between stokes aster and Rudbeckia were 0.44 and 0.50, respectively.

Free access

Cheryl R. Hampson and Anita N. Azarenko

Self-incompatibility, a genetic mechanism enforcing out crossing, is most commonly controlled by a single, multi-allelic gene, designated the S-gene. Sporophytic self-incompatibility (SSI), a form of incompatibility determined by the parent plant rather than the gametes, is present in the Brassicaceae, Compositae and other families, and also in hazelnut (Corylus avellana L.). Little is known about the molecular basis of SSI in plants other than crucifers. An S-gene cloned from Brassica oleracea (donated by Dr. June Nasrallah, Cornell University) was used to probe genomic DNA obtained from seven hazelnut genotypes. DNA hybridization was observed in cultivars `Hall's Giant' and `Willamette'. Gene similarity was estimated to be 70-80%.

Free access

M. Oren-Shamir, L. Shaked-Sachray, A. Nissim-Levi, and D. Weiss

Little is known about the effect of growth temperature on Aster (Compositae, Asteraceae) flower development. In this study, we report on this effect for two aster lines, `Suntana' and `Sungal'. Growth temperature had a dramatic effect on the duration of flower development, ranging from 22 days for plants growing at 29 °C up to 32 days for plants grown at 17 °C. Flower longevity was ≈40% shorter under the higher temperature for both lines. Growth temperature also affected flowerhead form: `Suntana' flowerhead diameter was 20% larger at 17 °C than at 29 °C. The number of `Sungal' florets per flowerhead was four times greater at the lower temperature. Shading (30%) under temperature-controlled conditions had no effect on any of the parameters measured. For plants grown outdoors, our results suggest that shading plants may increase quality by reducing the growth temperature.

Free access

Hongzhan Huang, James Harding, and Thomas Bvrne

The effects of long-term genetic improvement are measured by selection response predicted from estimates of narrow-sense heritability. However, changes of population mean must be partitioned into genetic and environmental components-in order to accurately estimate selection response.

A long-term selection experiment for cut-flower yield in the Davis population of gerbera (Gerbera hybrida, Compositae) was conducted for sixteen generations. Breeding value was estimated for individual plants in the population using Best Linear Unbiased Prediction (BLUP). Genetic change was calculated from breeding values of individual plants in each generation. The results of this study indicate: the long-term selection experiment was successful and necessary for genetic improvement. Genetic change over sixteen generations was 33 flowers. Mean breeding values increased monotonously with an “S” shape pattern. Environmental effects fluctuated from generation to generation. Cut-flower yield in the Davis population of gerbera will continuously respond to selection.

Free access

S. Bergeron, M.-P. Lamy, B. Dansereau, S. Gagne, S. Parent, and P. Moutoglis

While the majority of terrestial plants are colonized in soils by vesicular-arbuscular fungi (AM), that does not mean that these species can form a symbiosis with AM fungi in an artificial substrate under commercial production conditions. The purpose of this study was to identify those plants having a colonization potential. In Mar. 1998, 51 species and cultivars of ornamental plants were inoculated with two vesicular-arbuscular fungi (Glomus intraradices Schenk & Smith, and Glomus etunicatum Becker & Gerdemann; Premier Tech, Rivière-du-Loup, Quèbec). Periodic evaluations of colonization were done 5, 7, 9, 12, and 16 weeks after seeding. More than 59% of these plants tested were shown to have a good colonization potential with G. intraradices. Species belonging to the Compositae and Labiatae families all colonized. Species in the Solanaceae family showed slight to excellent colonization. Several species studied belonging to the Amaranthaceae, Capparidaceae, Caryophyllaceae, Chenopodiaceae, Cruciferae, Gentianaceae, Myrtaceae et Portulaceae families were not colonized. Root colonization with G. etunicatum was not detected on these species and cultivars during this short experimental period.

Full access

Jason B. Scott, David H. Gent, Frank S. Hay, and Sarah J. Pethybridge

Flower number is the primary determinant of yield in pyrethrum (Tanacetum cineariifolium). Traditional estimates of flower numbers use physical harvesting of flowers, which is time consuming, destructive, and complicated. The precision of flower number estimates may be highly influenced by spatial heterogeneity of plant density and vigor. Here, we examined the potential for digital image analysis to enable rapid, nondestructive assessment of flower number. This technique involved removal of pixels with color profiles not typical of the disc florets of pyrethrum. Particle counting was then performed using defined size and shape parameters to estimate flower numbers. Estimates of flower number based on image analyses were correlated with physical harvests of flowers, with estimates representing about an average of 32% of total flower numbers present within a sampling unit. This relationship was consistent across all observed flower densities. Covariate analysis indicated that occurrences of crop lodging and over mature flower canopies had significant, detrimental effects on system predictions. Pyrethrum flowers were spatially aggregated within fields with the degree of aggregation greatest at the lowest flower densities. Based on modeled flower distributions, eight quadrats (0.49-m2 sampling unit) were sufficient to achieve a cv of 0.1 in a 600-m2 plot area in all but the lowest flower densities. The utility of this approach for biomass assessment in pyrethrum and other Compositae is discussed.

Free access

Alan W. McKeown, John W. Potter, Mary Gartshore, and Peter Carson

Root lesion nematodes (Pratylenchus penetrans Cobb) are well-adapted to sandy soils and have a host range including most agronomic, horticultural, and wild species grown in Ontario. As native climax sand-prairie species have coexisted with the nematode for millennia, resistance or tolerance may have developed. We have screened using the Baermann pan technique, soil samples taken from a private collection of sand-prairie species collected from local prairie remnants. Several species [Liatris cylindracea Michx., Monarda punctata L., Pycnanthemum virginianum L., Echinacea purpurea (L.) Moench] proved to be excellent hosts (>500/kg of soil) of root lesion nematode, confirming the presence of this nematode in the soil. Over two seasons, we determined that 10 plant species belonging to the families Asclepiadaceae, Compositae, Graminae, and Leguminosae to support very low numbers of P. penetrans. Brown-eyed susan (Rudbeckia hirta L.) had no root lesion nematodes throughout both seasons, Butterfly weed (Asclepias tuberosa L.) very low counts, while Switch grass (Panicum virgatum L.) and Indian grass [Sorghastrum nutans (L.) Nash] had detectable root lesion nematodes on only one sampling date each year. Big Bluestem (Andropogon gerardii Vitman), Little Bluestem [Schizachyrium scoparium (Michx) Nash], Sand Dropseed [Sporobolus cryptandrus (Torr.) Gray], Side-oats Grama [Bouteloua curtipendula (Michx.)) Torr], Broomsedge (Andropogon virginicus L.), Bush clover [Lespedeza capitata (Michx] also are poor hosts. These species have potential as cover or rotation crops useful for nematode management.

Free access

Jessica Gaus Barb, Dennis J. Werner, and Shyamalrau P. Tallury

relationships to apomicts in the Ranunculus cassubicus group: Insights from DNA content and isozyme variation Plant Syst. Evol. 234 85 100 Huziwara, Y. 1962 Karyotype analysis in some genera of Compositae. VIII. Further studies

Free access

David C. Zlesak and Brent J. Hanson

® (Sycamore, IL) under the brand Proven Selections ® and is licensed through PlantHaven ® (Santa Barbara, CA). Literature Cited Fisher, T.R. 1957 Taxonomy of the genus Heliposis (Compositae) Ohio J. Sci. 57 171 191