Search Results

You are looking at 1 - 10 of 24 items for :

Clear All
Free access

Gioia D. Massa, Jeffery C. Emmerich, Robert C. Morrow, C. Michael Bourget and Cary A. Mitchell

Electrical cost, primarily for lighting, is one of the largest factors inhibiting the development of “warehouse-based” controlled environment agriculture (CEA). In a jointly sponsored collaboration, we have developed a reconfigurable LED lighting array aimed at reducing the electrical energy needed to grow crops in controlled environments. The lighting system uses LED “engines” that can operate at variable power and that emit radiation only at wavelengths with high photosynthetic activity. These light engines are mounted on supports that can be arranged either as individual intracanopy “lightsicles” or in an overhead plane of lights. Heat is removed from the light engines using air flow through the hollow LED strip mounts, allowing the strips to be placed in close proximity to leaves. Different lighting configurations depend on the growth habit of the crops of interest, with intracanopy lighting designed for planophile crops that close their canopy, and close overhead lighting intended for erectophile and rosette crops. Tests have been performed with cowpea, a planophile dry bean crop, growing with intracanopy LED lighting compared to overhead LED lighting. When crops are grown using intracanopy lighting, more biomass is produced, and a higher index of biomass per kW-h is obtained than when overhead LEDs are used. In addition, the oldest leaves on intracanopy-grown plants are retained throughout stand development, while plants lit from overhead drop inner-canopy leaves due to mutual shading after the leaf canopy closes. Research is underway to increase the energy efficiency and automation of this lighting system. This work was supported in part by NASA: NAG5-12686.

Free access

Robert W. Langhans and Mauricio Salamanca

With the primary objective of assuring food safety at the production level, a HACCP (Hazard Analysis and Critical Control Point) plan was developed and implemented in an 8000-ft2 greenhouse producing 1000 heads of lettuce per day in Ithaca, N.Y. The plan was developed following the HACCP principles and application guidelines published by the National Advisory Committee on Microbiological Criteria for Foods (1997). The CEA glass greenhouse uses both artificial high-pressure sodium lamps and a shade curtain for light control. Temperature is controlled via evaporative cooling and water heating. Lettuce plants are grown in a hydroponic pond system and are harvested on day 35 from day of seeding. Known and reasonable risks from chemical, physical, and microbiological hazards were defined during the hazard analysis phase. Critical control points were identified in the maintenance of the pond water, the operation of evaporative coolers, shade curtains, and during harvesting and storage. Appropriate prerequisite programs were implemented before the HACCP plan as a baseline for achieving minimum working conditions. Proper critical limits for some potential hazards were established and monitoring programs set up to control them. Postharvest handling was setup in an adjacent head house that was adapted as a food manufacturing facility according to New York State Dept. of Agriculture and Markets standards. Potential applications will be discussed.

Full access

Celina Gómez, Christopher J. Currey, Ryan W. Dickson, Hye-Ji Kim, Ricardo Hernández, Nadia C. Sabeh, Rosa E. Raudales, Robin G. Brumfield, Angela Laury-Shaw, Adam K. Wilke, Roberto G. Lopez and Stephanie E. Burnett

The term controlled-environment agriculture (CEA) was first introduced in the 1960s and refers to an intensive approach for controlling plant growth and development by capitalizing on advanced horticultural techniques and innovations in technology

Open access

Daniel P. Gillespie, Chieri Kubota and Sally A. Miller

Rootzone pH affects nutrient availability for plants. Hydroponic leafy greens are grown in nutrient solutions with pH 5.5 to 6.5. Lower pH may inhibit plant growth, whereas pathogenic oomycete growth and reproduction may be mitigated. General understanding of pH effects on nutrient availability suggests likely toxicity and deficiency of specific micronutrients. We hypothesized that if adjustments are made to the micronutrient concentrations in solution, plants will grow in lower-than-conventional pH without nutrient disorders, while oomycete disease incidence and severity may be reduced. To develop a new nutrient solution management strategy, we examined pH of 4.0, 4.5, 5.0, and 5.5 with or without micronutrient adjustments for growing two cultivars of basil plants Dolce Fresca and Nufar in a greenhouse hydroponic deep-water culture (DWC) system. Micronutrient adjustments included reduced concentrations of copper, zinc, manganese, and boron by one-half and doubled molybdenum concentration. Plants harvested 20 to 28 days after transplanting did not show significant effects of pH or the micronutrient adjustment. Phosphorus, calcium, magnesium, sulfur, boron, manganese, and zinc concentrations in leaves significantly declined, while potassium and aluminum concentrations increased with decreasing pH. However, these changes and therefore micronutrient adjustments did not affect basil plant growth significantly. ‘Nufar’ basil plants were then grown in a growth chamber DWC system at pH 4.0 or a conventional 5.5 with and without inoculation of Pythium aphanidermatum zoospores. Fourteen days after inoculation, P. aphanidermatum oospore production was confirmed only for the inoculated plants in pH 5.5 solution, where a significant reduction of plant growth was observed. The results of the present study indicate that maintaining nutrient solution pH at 4.0 can effectively suppress the severity of root rot caused by P. aphanidermatum initiated by zoospore inoculation without influencing basil growth.

Open access

Andrea Stuemky and Mark E. Uchanski

months of the year. Producing an edible horticulture crop using this combination of factors is called controlled environmental agriculture, or CEA ( Bradford et al., 2010 ; Hamano et al., 2016 ). Although moving production of high-value crops indoors

Free access

Arlie A. Powell, Karl Harker, Roger Getz and Eugene H. Simpson

In order to provide timely weather information to county agents (CEA) and growers, a sophisticated user friendly weather information program was developed that provides over 900 weather files daily to users. This program uses a 420 Sun Server that automatically downloads files from the NWS office on the AU campus and makes them instantly available to CEA offices via the Extension Network. Growers may obtain information from CEAS or use their personal computers to access a “Weather Board”. A chilling/growing degree hour (GDH) model (mod. 45) has been developed for peaches that provides a good estimate of when rest is completed and allows prediction of phenological stages through flowering. This information assists growers with orchard management decisions. Studies with peaches were conducted using the chilling/GDH model to properly apply hydrogen cyanamide (Dormex) to replace lack of chilling. This work resulted in an effective application timing based on chilling accumulation and allowed development of a forecast model for grower use.

Free access

Norman R. Scott, Corinne Johnson Rutzke and Louis D. Albright

One of the deterrents to the commercial adoption of controlled-environment agriculture (CEA) on a broad scale is the significant energy cost for lighting and thermal environmental control. Advances in energy conversion technologies, such as internal combustion engines (ICs), microturbines and fuel cells, offer the potential for combined heat and power (CHP) systems, which can be matched with the needs of CEA to reduce fossil-based fuels consumption. A principal concept delineated is that an integrated entrepreneurial approach to create business and community partnerships can enhance the value of energy produced (both electrical and heat). Energy production data from a commercial dairy farm is contrasted with energy use data from two greenhouse operations with varying energy-input requirements. Biogass produced from a 500-cow dairy combined with a 250-kW fuel cell could meet nearly all of the energy needs of both the dairy and an energy-intensive 740-m2 CEA greenhouse lettuce facility. The data suggest CEA greenhouses and other closely compatible enterprises can be developed to significantly alter agriculture, as we have known it.

Free access

Arlie A. Powell, Roger Getz and Eugene H. Simpson III

An agricultural weather program has been developed in Alabama and is available on the ACENET computer network of the Alabama Cooperative Extension Service (ACES). This program involves the coordinated efforts of the National Weather Service (NWS), ACES and grower organizations. The program began in March 1987 and has been upgraded several times. Hardware now being used includes a Sun Microsystem SPARC station by NWS and a Sun Microsystems Server Model 4/280 by ACES. Existing and experimental NWS forecast products are disseminated to each of Alabama's 67 county agents offices (CEAs) and to local producers using ACES' computer network. A comprehensive selection of climate and weather related information is available to ACES staff including a widely used freeze alert program. Very detailed freeze forecasts and related information is available to users hourly, 7 days a week. A specialist prepared commentary further enhances use of information during each freeze event. Considerable cost savings have been realized by producers. A pilot program is being initiated in 1991 to incorporate data from several real time weather stations into the system.

Free access

Helen Thompson and Robert Langhans

This research explored cool crop production in various climate zones using CEA facilities and hydroponics ponds to control growth rate and quality through root zone temperature control. The precise controls were used to vary air and water temperatures to study the temperature gradient between root and shoot zones. Effect of this gradient was measured by growth rates and final harvest dry weights. Lactuca sativa L. cv. Ostinata seedlings were germinated and grown 11 days in a growth chamber and moved to greenhouse ponds. Air temperatures chosen were 17, 24, and 31°C. These were constant for the 24 days that lettuce grew in the ponds with a 5°C decrease for 14 hours. during the night. Water temperatures of the three ponds in the greenhouse were set and maintained at 17, 24, and 31°C. Maximum final harvest weights were obtained at 24°C air/water 24°C. Final weights for the 17 and 31°C water setpoint were comparable at 24°C air. The 31 °C air /water inhibited quality and final dry weight, while 17 and 24°C water produced equivalent dry weights at 31°C air. At 31°C air heads were tighter at 17 than at 24°C, and loose at 31°C. At air 17 °C maximum weight was at 24°C water and minimum at 31°C water. At 17°C air, the 24°C water plants were of good quality, with thicker leaves but visibly smaller than the 31°C water crop. Significant differences in harvest dry weights were shown at each 7-day harvest beginning on day 14, due to both air and water setpoint factors and there was significant interaction between them.

Full access

Mary A. Rogers

Organic vegetable production under glass or in other protected environments, hereto referred as controlled-environment agriculture (CEA) is growing, according to the 2014 census of organic agriculture reported by the U.S. Department of Agriculture