Search Results

You are looking at 1 - 10 of 72 items for :

  • "Buchloe dactyloides" x
Clear All

. Shearman, R.C. 2009 Buffalograss ( Buchloe dactyloides ) turfgrass performance and seed yield characteristics Intl. Turfgrass Soc. Res. J. 11 519 532 Beard, J.B. 1973 Turfgrass science and culture. Prentice Hall, Englewood Cliffs, NJ. Beetle, A.A. 1950

Free access

Stolon nodal segments of Buchloe dactyloides (Nutt.) Engelm. were removed from greenhouse grown plants and placed on Gamborg's B5 medium in order to determine nodal position and 2,4-D level required to give maximum callus initiation. 2,4-D levels used were 5uM, 16uM, 35uM, and 50uM. Six nodal segments were grouped according to position on the stolon, from the most recent node (node one) to the basal node (node 6). It was concluded that node 4 gave statistically greater callus mass than nodes 1, 2, 3, 5, and 6. Increasing levels of 2,4-D suppressed callus initiation, with maximum response occurring at 5uM 2,4-D.

Free access

Buffalograss [ Buchloe dactyloides (Nutt.) Engelm.] is a warm-season grass native to the Great Plains of North America ( Wenger, 1943 ), and is commonly established from burs containing three to five caryopses (Beard, 1973; Quinn, 1987 ; Riordan

Free access
Authors: and

The polymerase chain reaction (PCR) and RAPD fragments are potentially useful methods for identifying turfgrass cultivar breeding lines. RAPD markers were studied in 25 vegetatively propagated buffalograss lines using oligonucleotide random primers and agarose-gel electrophoresis to determine their potential for identifying cultivar breeding lines. The variation of RAPD markers was extensive. The RAPD markers produced by one random primer were sufficient to separate the 25 buffalograss lines. Cluster analysis baaed on' the RAPD markers produced by two random primers revealed that the 25 buffalograss lines generally fell into two groups: diploid and hexaploid. Three DNA extraction methods—sarcosyl lysis-chloroform extraction-isopropanol precipitation, sodium dodecyl sulfate (SDS) lysine-isopropanol precipitation, and boiling in the presence of Chelex-100 resin—and fresh or oven-dried tissues were tested for reproducibility of RAPD markers. The three DNA extraction methods, using dry or fresh plant tissues, produced highly comparable RAPD marker profiles. More than 80%1 of the RAPD markers was consistently detected in six replicate analyses. The above studies demonstrate that small quantities (5 mg) of oven-dried leaf tissue and several DNA extraction methods can be used for buffalograss fingerprint studies.

Free access

Buffalograss is native to the Great Plains of North America. Its excellent drought resistance and low growth habit make it a good choice for a low-maintenance turf. A reproducible and efficient regeneration protocol of buffalograss is critical for further genetic transformation. By using immature inflorescences as explants, we have achieved the regeneration of buffalograss of two female clones, `315' and `609', a male clone, NE 84-45-3, and a synthetic cultivar, `Texoka'. Somatic embryogenesis was observed. The medium used for callus initiation was MS basal medium supplemented with various concentrations of 2,4-D and BA. After 4 weeks of dark culture, calli with nodular structures were transferred to the same basal medium supplemented with BA and either a reduced rate of 2,4-D or no 2,4-D. It was demonstrated that 2,4-D at 2 or 3 mg/L is optimal for embryogenic callus production. The presence of BA from 0.1 mg/L to 0.5 mg/L was required for the regeneration of `315', `609', and NE 84-45-3. For `Texoka', 2,4-D at 0.5 mg/L with BA at 0.3 mg/L in the regeneration medium favored normal development of somatic embryos that were capable of germination. A genotypic effect was observed with regard to embryogenic callus production; explants of the male genotype NE 84-45-3 exhibited a higher percentage of embryogenic callus formation than was found for the two female genotypes. A significant seasonal effect was also observed with inflorescences collected in early May exhibiting a higher percentage of callus formation than those collected in the summer and fall.

Free access

The use of random amplified polymorphic DNA (RAPD) markers has been shown to be a potentially useful technique for identifying buffalograss breeding lines. Analysis of RAPD markers has also revealed considerable variation within, as well as among, each of four natural buffalograss populations surveyed. Identification of genetic markers for quantitative traits, such as physiological components of tolerance to salt stress, can provide important information for plant improvement programs. The objectives of this study were to develop DNA fingerprints for buffalograss clones selected from an in vitro seedling screening program for survival at high NaCI (200–250 mM) levels, identify markers for future analysis, and assess the variability among the lines. DNA was extracted from leaves of 10 salt-selected and 15 non-selected buffalograss clones. Fifty-two 10-mer primers were screened for ability to produce bands with DNA from four clones as visualized on ethidium-stained agarose gels. Bands were most reproducible with a genomic template DNA concentration of 1 ngμl–1 reaction volume. Primers selected for ability to produce a moderate number of clear bands were used to produce RAPD profiles of the 25 clones. Abundant polymorphism to distinguish among clones was found. Four primers produced a total of 45 polymorphic markers. The primer 5′-CGGAGAGCCC-3′ produced 11 readily scored markers, allowing identification in 94.67% of pair-wise comparisons. As a group, RAPD profiles of salt-selected clones are more variable than non-selected clones from the same population; however, no unique pattern of markers generated by primers screened to date differentiates all salt-selected clones from the non-selected group.

Free access

activities of Buchloe dactyloides and Zoysia japonica in response to localized soil drying Plant Soil 208 179 186 10.1023/A:1004472314631 Huff, D.R. Wu, L. 1987 Sex expression in buffalograss under different

Free access

Buffalograss [Buchloe dactyloides (Nutt.) Engelm.] use as a fairway turfgrass is limited in northern portions of its adaptation zone by its extended winter dormancy and tan coloration in early spring and late fall. Cool-season grasses mixed with buffalograss could enhance turfgrass appearance and performance in fall and early spring. Research was conducted near Mead, NE, with eight buffalograss genotypes maintained under fairway conditions to determine the effect of blue fescue (Festuca ovina L. var. glauca Lam.) overseeding rate on turfgrass performance. Interactions were nonsignificant in most cases so main effects are emphasized. Differences were observed between seeding rates and genotypes for most traits studied. Overseeding blue fescue enhanced spring green-up, fall color retention, stand density, and turfgrass quality. These effects were most pronounced in late fall and early spring, when buffalograss plants were entering or exiting winter dormancy. The 5 g·m−2 blue fescue overseeding rate improved all performance traits studied when compared with the nonoverseeded buffalograss control and was not different from the 10 g·m−2 seeding rate treatment. Thus, the 5 g·m−2 blue fescue overseeding rate appeared to be near optimum for overall turfgrass performance, offering reduced seed cost and decreased potential for species interference. The ‘Legacy’ buffalograss and ‘SR-3200’ blue fescue mixture had the best performance of the genotypes studied as a result of their visual compatibility in terms of color similarity.

Free access

Early-spring flowering bulbs can increase biodiversity while adding color to lawns and other grassy areas. However, few studies have investigated whether bulbs can flower and persist in warm-season lawns or provide feeding habitat for pollinating insects. Thirty early-spring flowering bulbs, including species of Anemone, Chionodoxa, Crocus, Eranthis, Hyacinthus, Ipheion, Iris, Leucojum, Muscari, and Narcissus, were established in bermudagrass (Cynodon dactylon L. Pers) and buffalograss [Buchloe dactyloides (Nutt.) J.T. Columbus] lawns in late autumn 2015 in Fayetteville AR. Bulbs were assessed over three growing seasons for flowering characteristics, persistence, and their ability to attract pollinating insects. A growing degree day model was also developed to predict peak flowering times in our region. Numerous bulb entries produced abundant flowers in bermudagrass and buffalograss lawns in the first year after planting, but persistence and flower production were reduced in both the second and third years of the trial. Five bulbs persisted for multiple years in both turfgrass species and continued to produce flowers, including Crocus flavus Weston ‘Golden Yellow’ (crocus), Leucojum aestivum L. (spring snowflake), Narcissus (daffodil) ‘Baby Moon’, Narcissus ‘Rip Van Winkle’, and Narcissus ‘Tete-a-Tete’. Several bulbs, primarily crocuses and Muscari spp. (grape hyacinth), were also observed to attract pollinating insects, principally honey bees (Apis mellifera). These results demonstrate that some early-spring bulbs can persist in competitive warm-season turfgrasses, while providing pollinator forage, but species and cultivar selection is critical for long-term success.

Free access

Covers, mulches, and erosion-control blankets are often used to establish turf. There are reports of various effects of seed cover technology on the germination and establishment of warm-season grasses. The objective of this study was to determine how diverse cover technologies influence the establishment of bermudagrass (Cynodon dactylon), buffalograss (Buchloe dactyloides), centipedegrass (Eremochloa ophiuroides), seashore paspalum (Paspalum vaginatum), and zoysiagrass (Zoysia japonica) from seed. Plots were seeded in June 2007 or July 2008 with the various turfgrass species and covered with cover technologies, including Curlex, Deluxe, and Futerra products, jute, Poly Jute, polypropylene, straw, straw blanket, Thermal blanket, and the control. Establishment was reduced in straw- and polyethylene-covered plots due to decreased photosythentically active radiation penetration or excessive temperature build-up, respectively. Overall, Deluxe and Futerra products, jute, and Poly Jute allowed for the highest establishment of these seeded warm-season grasses.

Full access