Search Results

You are looking at 1 - 10 of 59 items for :

  • Refine by Access: All x
Clear All
Full access

N.K. Damayanthi Ranwala, Anil P. Ranwala, and William B. Miller

One of the problems associated with preplant bulb dips into plant growth regulator (PGR) solutions is the lack of knowledge of solution efficacy as an increasing number of bulbs are treated. We evaluated the effectiveness (“longevity”) of paclobutrazol (Bonzi) and uniconazole (Sumagic) solutions repeatedly used to dip hybrid lily (Lilium sp.) bulbs. Experiments were conducted over a 2-year period, using sequential 1-minute dips into paclobutrazol (100 or 200 mg·L–1) or uniconazole (2.5 mg·L–1). No difference in plant height occurred as the number of bulbs dipped into PGR solutions increased to at least 55 bulbs per liter. This was true whether bulbs were washed (with tap water to remove soil particles attached to the bulbs) or unwashed prior to the PGR dip. These findings have an important impact on cost effectiveness of bulb dips, as the more times the solution can be used, the lower the cost. Washed bulbs were taller than unwashed bulbs due to lower PGR liquid uptake in washed bulbs (about 1 mL less per bulb) compared to the unwashed bulbs. These results indicate that the hydration condition of bulbs prior to dipping can affect the amount of PGR liquid uptake and therefore final plant height.

Full access

Christopher J. Currey and Roberto G. Lopez

gently removed as 40 uniform bulbs were selected. Ten bulbs were placed in each of 4 L of solution containing 30, 60, or 120 mg·L −1 paclobutrazol (Bonzi; Syngenta Crop Protection, Greensboro, NC) or 4 L of reverse-osmosis water (control) for 15 min to

Full access

John M. Ruter

Paclobutrazol was applied as a foliar spray, root-medium drench, and impregnated spike to `New Gold' lantana grown in 2.8-liter pots. Plants were treated 14 June 1993 at rates of 0, 0.5, and 1.0 mg a.i. paclobutrazol/pot and were harvested 27 July 1993 when control plants required further pruning. Impregnated spikes reduced plant size and flowering to a greater degree than spray applications. Drenches reduced root dry weight and biomass compared to spray applications. Plants treated with 0.5 and 1.0 mg a.i. paclobutrazol/pot were not different in regards to plant growth and flowering. Compared to nontreated controls, plants treated with paclobutrazol had a reduced growth index, decreased shoot and root dry weight, and fewer flowers with open florets. All plants in the study were marketable, even though growth control was considered excessive. Lower rates than used in this study should be considered for controlling growth. These results suggest that impregnated spike formulations of paclobutrazol may control plant growth in pine bark-based media.

Full access

Brian A. Krug, Brian E. Whipker, Ingram McCall, and John M. Dole

Preplant bulb soaks of flurprimidol, paclobutrazol, and uniconazole; foliar sprays of ethephon and flurprimidol; and substrate drenches of flurprimidol were compared for height control of `Anna Marie' hyacinths (Hyacinthus orientalis). Preplant bulb soak concentrations of flurprimidol and paclobutrazol were from 25 to 400 mg·L-1, and uniconazole from 5 to 80 mg·L-1. Height control was evaluated at anthesis and 11 days later under postharvest conditions. Ethephon (250 to 2000 mg·L-1) and flurprimidol (5 to 80 mg·L-1) foliar sprays were ineffective. Flurprimidol (0.25 to 4 mg/pot) drenches had no effect during forcing, but controlled postharvest height at concentrations ≥0.25 mg/pot a.i. with at least 4% shorter plants than the untreated control. Preplant bulb soaks resulted in height control with flurprimidol ≥25 mg·L-1, paclobutrazol ≥100 mg·L-1, and uniconazole ≥40 mg·L-1; having at least 9%, 6%, and 19%, respectively, shorter plants than the untreated control. Based on our results, flurprimidol preplant bulb soaks have a greater efficacy than either uniconazole or paclobutrazol. Preplant PGR soaks are a cost-effective method of controlling plant height of hyacinths because of the limited amount of chemical required to treat a large quantity of bulbs.

Full access

Brian A. Krug, Brian E. Whipker, Ingram McCall, and John M. Dole

Preplant bulb soaks of ancymidol, flurprimidol, paclobutrazol, and uniconazole; foliar sprays of flurprimidol; and substrate drenches of flurprimidol, paclobutrazol, and uniconazole were compared for height control of `Prominence' tulips (Tulipa sp.). Height control was evaluated at anthesis in the greenhouse and 10 days later under postharvest conditions. Substrate drenches of ancymidol, flurprimidol, and paclobutrazol resulted in adequate control using concentrations of 0.5, 0.5, and 1 mg/pot a.i. (28,350 mg = 1 oz), respectively. At these concentrations, ancymidol drenches cost $0.06/pot and paclobutrazol drenches $0.03/pot. Since flurprimidol is not yet available and no price is available, growers will need to assess the cost compared to ancymidol and paclobutrazol. Flurprimidol foliar sprays at <80 mg·L–1 (ppm) were ineffective in controlling height during greenhouse forcing, but during postharvest evaluation 80 mg·L–1 resulted in 14% shorter plants than the untreated control. Preplant bulb soaks of flurprimidol, paclobutrazol, and uniconazole at concentrations of 25, 50, and 10 mg·L–1, respectively, effectively controlled plant height. Preplant plant growth regulator soaks are a cost-effective method of controlling plant height of tulips because of the limited amount of chemical required to treat a large quantity of bulbs.

Full access

James L. Gibson and Brian E. Whipker

Ornamental cabbage and kale (Brassica oleracea var. acephala) plants of cultivars Osaka White and Nagoya Red were treated with paclobutrazol and uniconazole as foliar sprays or substrate drenches. These treatments were compared to the industry standard of daminozide foliar sprays. Applying drenches of paclobutrazol (a.i.) at 4 mg/pot or uniconazole (a.i.) at 1 mg/pot (28,350 mg = 1.0 oz) resulted in 6% or 17%, respectively, shorter `Osaka White' plants while a 2 mg/pot paclobutrazol drench or a uniconazole drench at 0.25 mg/pot resulted in 25% shorter `Nagoya Red' plants. Although effective, the expense of substrate drenches for both plant growth regulators (PGRs) would not be economically feasible for growers to use. Paclobutrazol foliar sprays at concentrations of up to 80 mg·L-1 (ppm) were ineffective in controlling plant height and diameter of either `Osaka White' or `Nagoya Red'. A uniconazole foliar spray of 16 mg·L-1 resulted in 17% shorter `Nagoya Red' plants and 6% shorter `Osaka White' plants. A daminozide foliar spray of 2500 mg·L-1, sprayed twice, resulted in 21% shorter plants for both cultivars. Spraying daminozide would provide optimal height control for the retail grower. Although spraying daminozide twice controlled plant height and costs half the amount of an uniconazole spray at 16 mg·L-1, plant diameter was not affected with daminozide, therefore a wholesale grower who would desire a smaller diameter plant should use a uniconazole spray of 16 mg·L-1.

Free access

James E. Barrett, Carolyn A. Bartuska, and Terril A. Nell

Experiments with' White Christmas' and `Carolyn Wharton' caladiums (Caladium × hortulanum Birdsey), croton (Codiaeum variegatum), brassaia (Brassaia actinophylla Endl.), `Annette Hegg Dark Red' poinsettia (Euphorbia pulcherrima Wind.), and `Super Elfin Red' and `Show Stopper' impatiens [Impatiens wallerana (L.) Hook.f.] determined effectiveness of paclobutrazol in solid spike form as compared to media drench applications for height control. Paclobutrazol drenches and spikes were effective for all crops tested, with a similar concentration response for all, except that drenches had greater efficacy than spikes on caladium. A reduced effect was observed when spikes were placed on the medium surface of `Super Elfin Red' impatiens, while placement in the middle of the pot or around the side was equally effective. These results indicate that the spike formulation of paclobutrazol has potential to provide adequate size control for floriculture crops with the possible exception of rapidly developing crops, such as caladiums. Chemical name used: (2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-1,2,4-triazol-1-yl-) penten-3-ol (paclobutrazol).

Free access

Sarah A. White, Holly L. Scoggins, Richard P. Marini, and Joyce G. Latimer

Little information is available on cultural requirements for greenhouse production of Tradescantia virginiana L. We tested three plant growth regulators (PGRs) at ascending rates on T. virginiana `Angel Eyes,' `Blue Stone,' and `Red Cloud' in an effort to find appropriate application levels for height suppression. Treatments applied two weeks after transplant. Each PGR was applied once at the following rates: paclobutrazol at 0, 40, 80, 120, or 160 mg·L-1, uniconazole at 0, 15, 30, 45, or 60 mg·L-1, or flurprimidol at 0, 15, 30, 45, 60, or 75 mg·L-1. Repeated measures experimental design and multivariate analysis was used to examine plant responses to PGRs over time. The most effective paclobutrazol rate for adequate height suppression was 120 mg·L-1. Uniconazole at 30 to 45 mg·L-1 and flurprimidol at 45 to 60 mg·L-1 resulted in adequate height control. `Blue Stone' and `Red Cloud' appeared more responsive (greater suppression of height at rates applied) to both uniconazole and flurprimidol than `Angel Eyes.' These results suggest that cultivars respond in a different manner to PGRs applied to them; more compact growth can be obtained for cultivars tested using these suggested rates. Chemical names used: trifuloromethoxy phenyl-5-pyrimidinemethanol (flurprimidol); [(±)-(R*,R*)-ß-((4-chlorophenyl) methyl)-?-(1,1,-dimethylethyl)-1H-1,2,4,-triazole-1-ethanol)] (paclobutrazol); uniconazole.

Free access

Juan P. Brigard, Richard L. Harkess, and Brian S. Baldwin

Tomato seedling hypocotyls elongate rapidly after germination resulting in weak seedlings. The effects of 0, 250, 500, 750, or 1000 mg paclobutrazol (PB)/L seed soak and soaking times from 1 to 12 hours on tomato (Solanum lycopersicum L.) seed germination, seedling growth, and plant growth were tested. Adequate height control was obtained with 250 mg PB/L while soaking time did not affect seedling growth. In a second experiment, PB was tested at 0, 50, 100, 150, 200, or 250 mg PB/L soaking the seed for 1 hour. A concentration of PB at 100 mg·L–1 provided optimum control of hypocotyl elongation with minimal residual effect on subsequent plant growth. In a third experiment, seed soaked at the different PB concentrations were germinated and grown under light intensities of 0.09, 50, 70, or 120 μmol·m–2·s–1. Seedlings grown under 0.09 μmol·m–2·s–1 were not affected by PB treatment and did not develop an epicotyl. PB seed soak treatment gave greater growth suppression under 50 μmol·m-2·s-1 than under the two higher light levels. Soaking tomato seeds in 100 mg PB/L for 1 hour prevented early hypocotyl stretch of tomato seedlings with no long term effects on plant growth. This treatment effectively prevented excessive hypocotyl elongation when seeds were germinated under low PAR while not over controlling elongation under high PAR conditions.

Full access

James C. Sellmer, Craig R. Adkins, Ingram McCall, and Brian E. Whipker

Plant growth retardant (PGR) substrate drenches (in mg a.i per pot.) of ancymidol at 0.25, 0.5, 1, 2, or 4; paclobutrazol at 1, 2, 4, 8, or 16; and uniconazole at 0.25, 0.5, 1, 2, or 4 (28,350 mg = 1.0 oz) were applied to pampas grass (Cortaderia selloana). Control of height growth during greenhouse forcing and the residual effects on plant growth in the landscape were evaluated. During greenhouse forcing, plant height exhibited a quadratic dose response to paclobutrazol and uniconazole, while ancymidol treated plants exhibited a linear response to increasing dose. All rates of uniconazole resulted in plant heights which were 56% to 75% shorter than the nontreated control, whereas paclobutrazol and ancymidol treatments resulted in 6% to 64% and 5% to 29% shorter plants, respectively. Severe height retardation was evident with {XgtequalX}2 mg uniconazole. When the plants were transplanted and grown in the landscape (24 weeks after the PGR application), all plants treated with ancymidol, paclobutrazol, and {XltequalX}0.5 mg uniconazole exhibited heights similar to the nontreated control, suggesting no residual effects of the PGR for these treatments. Only plants treated with uniconazole at {XgtequalX}1 mg remained shorter than the nontreated control in the landscape. These results demonstrate that plant growth regulators can be effectively and economically applied in the greenhouse production of pampas grass.