Search Results

You are looking at 1 - 10 of 120 items for :

  • "1-naphthaleneacetic acid" x
  • All content x
Clear All
Free access

Cary J. Hebert, Darren H. Touchell, Thomas G. Ranney, and Anthony V. LeBude

with either 1-naphthaleneacetic acid (NAA) or IAA at 0, 2.5, 5, or 10 μM. Plant growth regulators were added to the media before autoclaving. Cultures were incubated at 23 ± 2 °C in complete darkness and the number of segments producing callus and

Free access

Marc van Iersel

Uprooting and transplanting seedlings can cause root damage, which may reduce water and nutrient uptake. Initiation of new roots and rapid elongation of existing roots may help minimize the negative effects of transplant shock. In this study, seedlings with four true leaves were transplanted into diatomaceous earth and the plants were transferred to a growth chamber, where they were treated with NAA (0, 0.025, 0.25, and 2.5 mg·L-1; 36 mL/plant). The effects of drenches with various amounts of 1-naphthaleneacetic acid (NAA) on the posttransplant CO2 exchange rate of vinca [Catharanthus roseus (L.) G. Don] were quantified. Whole-plant CO2 exchange rate of the plants was measured once every 20 minutes for a 28 day period. Seedlings treated with 0.025 or 0.25 mg·L-1 recovered from transplant shock more quickly than plants in the 0 and 2.5 mg·L-1 treatments. Naphthaleneacetic acid drenches containing 0.025 or 0.25 mg·L-1 increased whole-plant net photosynthesis (Pnet) from 10 days, dark respiration (Rdark) from 12 days, and carbon use efficiency (CUE) from 11 days after transplanting until the end of the experiment. The increase in CUE seems to have been the result of the larger size of the plants in these two treatments, and thus an indirect effect of the NAA applications. These differences in CO2 metabolism among the treatments resulted in a 46% dry mass increase in the 0.025 mg·L-1 treatment compared to the control, but shoot-root ratio was not affected. The highest rate of NAA (2.5 mg·L-1) was slightly phytotoxic and reduced the growth rate of the plants.

Free access

Christopher L. Rosier, John Frampton, Barry Goldfarb, Farrell C. Wise, and Frank A. Blazich

Seven concentrations of indole-3-butyric acid (IBA), seven concentrations of 1-naphthaleneacetic acid (NAA), and a nonauxin control were tested over three growth stages to determine their ability to promote adventitious rooting of stem cuttings from 3- and 4-year-old stock plants of virginia pine (Pinus virginiana Mill.). Cuttings were harvested September 2000 (semi-hardwood), February 2001 (hardwood), June 2001 (softwood), and October 2001 (semi-hardwood), treated with auxin concentrations ranging from 0 to 64 mm and placed under intermittent mist in a greenhouse. Rooting percentage, percent mortality, number of primary roots, total root length, root symmetry, root angle, and root diameter were assessed following 16 weeks. Growth stage affected every rooting trait measured except root symmetry and diameter. Auxin type affected total root length and root diameter, while auxin concentration affected every rooting trait except root angle. The highest predicted rooting percentages (46%) occurred when semi-hardwood cuttings were collected in September 2000 and treated with 7 mm auxin. Cuttings collected within the same growing season (2001) exhibited the highest predicted rooting percentage (33%) when softwood cuttings were treated with 6 mm auxin. Semi-hardwood cuttings rooted in 2001 produced the greatest number of roots and root lengths. Root diameter was significantly greater when NAA rather than IBA was applied, especially at higher concentrations.

Free access

Christopher L. Rosier, John Frampton, Barry Goldfarb, Frank A. Blazich, and Farrell C. Wise

Seven concentrations of IBA and seven concentrations of NAA plus a nonauxin control were tested over three growth stages to determine their effectiveness in promoting adventitious root formation on stem cuttings taken from 3- and 4-year-old stock plants of Fraser fir [Abies fraseri (Pursh) Poir.]. Cuttings were prepared in March (hardwood), June (softwood), or November (semi-hardwood) 2001, treated with auxin concentrations ranging from 0 to 64 mm, and placed under mist. Rooting percentage, percent mortality, number of primary roots, total root length, root system symmetry, and root angle were recorded after 16 weeks. Growth stage and auxin concentration significantly affected every rooting trait except root angle. NAA significantly increased the number of primary roots and total root length. However, auxin type did not significantly affect rooting percentage or percent mortality. The highest rooting percentages (99%) occurred when softwood cuttings were treated with 5 mm auxin, however, semi-hardwood cuttings also rooted at high percentages (90%) and had no mortality when treated with 14 mm auxin. Regardless of auxin type, the number of primary roots and total root length varied in similar patterns across concentration, although, NAA tended to induce a greater response. To root Fraser fir stem cuttings collected from 3- and 4-year-old stock plants, it is recommended that a concentration of 5 mm NAA should be used on softwood cuttings and 14 mm IBA on semi-hardwood cuttings. Chemical names used: indole-3-butyric acid (IBA); 1-naphthaleneacetic acid (NAA).

Free access

E.W. Stover, P.J. Stoffella, S.A. Garrison, D.I. Leskovar, D.C. Sanders, and C.S. Vavrina

A commercial mixture of 1-naphthaleneacetamide and 1-naphthaleneacetic acid (Amcotone) was applied to tomato (Lycopersicon esculentum Mill.) and pepper (Capsicum annuum L.) at various timings from early bloom through early fruit development to evaluate effects on fruit size and both early and total marketable yield. Amcotone was applied at rates from 10 to 40 mg·L-1, at three sites for each of the species studied. Measured yield response variables in tomato did not differ between the control and Amcotone treatments, regardless of location. Amcotone treatments did not affect yields or fruit size for pepper at the New Jersey or Texas sites. However, at Ft. Pierce, Fla., early marketable yield of pepper was increased in plots receiving three Amcotone applications at 10 mg·L-1, but total marketable yield was significantly reduced in all plots receiving more than two Amcotone sprays, and mean fruit weight was reduced by all Amcotone treatments. Early and total marketable yield of pepper at Ft. Pierce were markedly reduced in plots receiving four applications of 40 mg·L-1, which was a high rate used to assess potential phytotoxicity. While minimal benefit from auxin application was observed in this study, earlier studies suggest that these results may have been influenced by favorable environmental conditions for fruit development or negative effects on unopened flowers during all Amcotone spray applications.

Full access

Eugene K. Blythe, Jeff L. Sibley, Ken M. Tilt, and John M. Ruter

In five experiments, singlenode cuttings of `Red Cascade' miniature rose (Rosa) were treated with a basal quick-dip (prior to insertion into the rooting substrate) or sprayed to the drip point with a single foliar application (after insertion) of Dip `N Grow [indole-3-butyric acid (IBA) + 1-naphthaleneacetic acid (NAA)], the potassium salt of indole-3-butyric acid (K-IBA), or the potassium salt of 1-naphthaleneacetic acid (K-NAA); a single foliar spray application of Dip `N Grow with and without Kinetic surfactant; or multiple foliar spray applications of Dip `N Grow. Spray treatments were compared with their respective basal quick-dip controls {4920.4 μm [1000 mg·L-1 (ppm)] IBA + 2685.2 μm (500 mg·L-1) NAA, 4144.2 μm (1000 mg·L-1) K-IBA, or 4458.3 μm (1000 mg·L-1) K-NAA}. Cuttings sprayed with 0 to 246.0 μm (50 mg·L-1) IBA + 134.3 μm (25 mg·L-1) NAA, 0 to 207.2 μm (50 mg·L-1) K-IBA, or 0 to 222.9 μm (50 mg·L-1) K-NAA resulted in rooting percentages, total root length, percent rooted cuttings with shoots, and shoot length similar to or less than control cuttings. Exceptions were cuttings sprayed with 0 to 2.23 μm

(0.5 mg·L-1) K-NAA, which exhibited shoot length greater than the control cuttings. Addition of 1.0 mL·L-1 (1000 ppm) Kinetic organosilicone surfactant to spray treatments resulted in greater total root length and shoot length. Repeated sprays (daily up to seven consecutive days) had no or negative effects on root and shoot development.

Full access

E.W. Stover and D.W. Greene

Plant response to foliar application of plant growth regulators (PGRs) is often variable, in part due to environmental factors. Weather prior to application is thought to influence cuticle development and thus PGR uptake. For example, in growth chamber studies foliar uptake of 1-naphthaleneacetic acid (NAA) is sometimes increased when fruit trees are placed in low temperature and high humidity several weeks prior to application. Environmental conditions over an extended period of time after application may influence PGR conversion to active form (e.g., ethephon), PGR metabolism, or metabolic factors that affect PGR activity in the plant. The effects of environmental conditions on PGR uptake have been investigated extensively in laboratory studies. In many cases, uptake is clearly increased by high temperatures immediately after application. Laboratory studies report a linear positive correlation between temperature and uptake and greater temperature response above 25 °C (77.0 °F). High humidity and longer drying time often are also reported to increase PGR uptake in laboratory studies. These results are consistent with many grower observations on effects of weather on chemical thinning and have been incorporated into many product labels and extension recommendations. However, relatively few field experiments have been reported in which the relationship between PGR response and environmental conditions were assessed. Wash-off studies have demonstrated that rain shortly after application may reduce efficacy of NAA. Several studies demonstrate environmental interaction with metabolic activity involved in PGR action. For example, shading after thinner application is reported to increase fruitlet abscission and enhance effectiveness of some thinning agents. Chemical thinning of apples (Malus ×domestica) with ethephon is reported to correlate strongly with temperature in the days after application, while studies suggest that higher temperatures after aminoethoxyvinylglycine (AVG) application may reduce control of preharvest drop. However, the stage of fruitlet development at apple thinning often appears to be more important than environmental conditions at the time of PGR application. In addition, field experiments indicate that longer drying times at lower temperatures seem to largely compensate for greater uptake rates at higher temperatures. This paper discusses data from published and previously unpublished experiments in order to understand the effects of environment on PGR response variability.

Open access

Jenny B. Ryals, Patricia R. Knight, and Eric T. Stafne

acid (IBA) and 1-naphthaleneacetic acid (NAA) treatments, and our auxin rates were selected based on these results ( Carvalho Pires et al., 2010 ; Chaves et al., 2004 ; Gurung et al., 2015 ; Sabião, 2013 ). Based on these results, we hypothesized

Free access

Takahiro Tezuka, Masashi Harada, Masahumi Johkan, Satoshi Yamasaki, Hideyuki Tanaka, and Masayuki Oda

PGRs 1-naphthaleneacetic acid (NAA) and 6-benzyladenine (BA), which are commonly used in tissue culture, were applied to decapitated plants as foliar sprays to understand the physiology of shoot regeneration by CDM and to improve the efficiency of shoot

Free access

G.G. Ning and M.Z. Bao

, shoot elongation, and rooting procedures. Experiments of callus induction from cotyledon explants were performed on half-strength MS media supplemented with various levels of benzyladenine (BA), dichlophenoxyacetic acid (2,4-D), 1-naphthaleneacetic