Search Results

You are looking at 1 - 3 of 3 items for :

  • "γ-L-glutamyl-S-(1-propenyl)-L-cysteine sulfoxide" x
  • Refine by Access: All x
Clear All
Free access

Dean A. Kopsell and William M. Randle

Four cultivars of onion (Allium cepa L. `Primavera', `Granex 33', `Pegasus', and `Sweet Success') were grown to maturity in modified nutrient solutions with or without 2.0 mg·L-1 Na2 SeO4 (1.51 mg·L-1 SeO4 -2). Selenium did not affect total flavor precursor content (ACSO) in `Granex 33', `Pegasus', and `Sweet Success'. However, Se affected several individual ACSOs and precursor intermediates. Selenium decreased γ-L-glutamyl-S-(1-propenyl)-L-cysteine sulfoxide and trans(+)-S-(1-propenyl)-L-cysteine sulfoxide content in all four cultivars. (+)-S-Methyl-L-cysteine sulfoxide content was higher while (+)-S-propyl-L-cysteine sulfoxide content was lower with the added Se for two cultivars. Selenium lowered total bulb S content in all cultivars, and increased the percentage of total S accumulated as SO4 -2 in three cultivars. The effect of Se on the flavor pathway was similar to that found when onions were grown under low S-concentrations. Flavor changes can be expected when onions are grown in a high Se environment, however, specific changes may be cultivar dependent.

Free access

David E. Kopsell, William M. Randle, and Mark A. Eiteman

Onion (Allium cepa L.) pungency changes during storage. To better understand these flavor changes, seven onion cultivars representing different storage duration, photoperiodic requirement, and flavor intensity were greenhouse grown and the bulbs stored for 3 or 6 months at 5±3 °C, 0.8 to 1.1 kPa vapor pressure deficit. Bulbs were evaluated using high-pressure liquid chromatography quantification for changes in S-alk(en)yl cysteine sulfoxide (ACSO) flavor precursors and γ-glutamyl peptide (γ-GP) biosynthetic intermediates before storage and monthly thereafter. Before and during storage, cultivars differed in total ACSO, (+) S-methyl-L-cysteine sulfoxide (MCSO), trans-(+)-S-(1-propenyl)-L-cysteine sulfoxide (PRENCSO), (+) propyl-L-cysteine sulfoxide (PCSO), S-2 carboxypropyl glutathione (2-CARB), and γ-L-glutamyl-S-(1-propenyl)-L-cysteine sulfoxide (γGPECSO) concentration. During storage MCSO generally decreased while PRENCSO increased in concentration for most cultivars. The linear increase in PRENCSO concentration during storage was accompanied by a linear decrease in γGPECSO concentration. While not measured in this study, these trends indicate γ-glutamyl transpeptidase activity throughout bulb storage. γ-Glutamyl transpeptidase was previously reported to be active only in the later stages of bulb storage or during bulb sprouting. Changes in ACSO and γ-GP compounds during storage did not follow previously reported changes during storage for enzymatically formed pyruvic acid (EPY) for these cultivars. To better understand what causes flavor changes in onions during storage, future investigations should include analysis of the enzymes involved in flavor development and ACSO hydrolysis products.

Free access

William M. Randle, Jane E. Lancaster, Martin L. Shaw, Kevin H. Sutton, Rob L. Hay, and Mark L. Bussard

Three onion (Allium cepa L.) cultivars were grown to maturity at five S fertility levels and analyzed for S-alk(en)yl-L-cysteine sulfoxide (ACSO) flavor precursors, γ-glutamyl peptide (γ-GP) intermediates, bulb S, pyruvic acid, and soluble solids content. ACSO concentration and composition changed with S fertility, and the response was cultivar dependent. At S treatments that induced S deficiency symptoms during active bulbing, (+)S-methyl-L-cysteine sulfoxide was the dominant flavor precursor, and the flavor pathway was a strong sink for available S. As S fertility increased to luxuriant levels, trans(+)-S-(1-propenyl)-L-cysteine sulfoxide (PRENCSO) became the dominant ACSO. (+)S-propyl-L-cysteine sulfoxide was found in low concentration relative to total ACSO at all S fertility treatments. With low S fertility, S rapidly was metabolized and low γ-GP concentrations were detected. As S fertility increased, γ-GP increased, especially γ-L-glutamyl-S-(1-propenyl)-L-cysteine sulfoxide, the penultimate compound leading to ACSO synthesis. Nearly 95% of the total bulb S could be accounted for in the measured S compounds at low S fertility. However, at the highest S treatment, only 40 % of the total bulb S could be attributed to the ACSO and γ-GP, indicating that other S compounds were significant S reservoirs in onions. Concentrations of enzymatically produced pyruvic acid (EPY) were most closely related to PRENCSO concentrations. Understanding the dynamics of flavor accumulation in onion and other vegetable Alliums will become increasing important as the food and phytomedicinal industries move toward greater product standardization and characterization.