Search Results

You are looking at 1 - 10 of 57 items for :

  • "α-tocopherol" x
  • Refine by Access: All x
Clear All
Free access

Thomas C. Koch* and Irwin L. Goldman

Carotenoids (provitamin A) and tocopherols (vitamin E) are powerful antioxidants in plants and in the human diet. Carrot (Daucus carota) has been selected for increased levels of carotenoids, contributing to its orange color and reported health benefits. Selection for increased tocopherol has shown success in seed oils, but little progress has been made in the edible portions of most vegetable crops. HPLC measurement following a simultaneous heptane extraction of both compounds has shown a significant (P ≤ 0.001) positive correlation of α-tocopherol with α-carotene (r = 0.65) and β-carotene (r = 0.52). To increase both the tocopherols and carotenoids in plants, 3 populations have been established from select open-pollinated varieties grown in 2002. These populations consist of half-sib families with these differing selection schemes: based strictly on increased α-tocopherol levels; an index to increase α-carotene, β-carotene and α-tocopherol; and a random population in which no selection is occurring. After one cycle of selection, populations were grown on muck soil during the summer of 2003. Compared with the random population, an increase of 24.68% in α-tocopherol concentration was recorded for the population selected strictly on α-tocopherol while increases of 8.47% in α-tocopherol, 9.31% in α-carotene and 7.31% in β-carotene were recorded for the population with index selection. The continuation of these carrot populations shows promise to produce carrot germplasm with improved human nutritive value.

Free access

Simone Fanasca, Giuseppe Colla, Youssef Rouphael, Francesco Saccardo, Giuseppe Maiani, Eugenia Venneria, and Elena Azzini

A greenhouse experiment was carried out to determine the effect of cationic proportions (K, Ca, Mg) in the nutrient solution on carotenoids and α-tocopherol content at green–orange, orange, red, and intense-red ripening stages using a high-pigment tomato (Lycopersicon esculentum Mill.) cultivar hp (`Lunarossa') and a standard cultivar (`Corfù') grown in a soilless culture. The highest lycopene concentration was observed in the `hp' cultivar at the red and intense-red ripening stages (3.0 mg/100 g fresh weight and 3.2 mg/100 g fresh weight respectively). In both cultivars, the concentration of β-carotene increased during the ripening stages, reaching the highest value (0.6 mg/100 g fresh weight) at the intense-red stage. The hp cultivar has guaranteed higher lycopene (average, 2.0 mg/100 g fresh weight vs. 1.7 mg/100 g fresh weight) and α-tocopherol contents (average, 1.2 mg/100 g fresh weight vs. 0.9 mg/100 g fresh weight) than those of the standard. In both cultivars, a high proportion of K in the nutrient solution increased antioxidant concentration β-carotene and especially lycopene) during the red and intense-red ripening stages, followed by Mg. The lowest values were recorded for the Ca treatment. Lastly, a positive correlation was recorded between fruit tissue K and lycopene content, whereas a negative correlation was observed between fruit tissue Ca and lycopene content.

Free access

Cynthia L. Barden and William J. Bramlage

Antioxidants are believed to protect against the oxidation of α-farnesene to conjugated trienes in apple (Malus domestica, Borkh.) peel, thus providing resistance against superficial scald development. We conducted three experiments in which apples were a) harvested weekly, during which they were exposed to increasing hours at <10C during ripening; b) induced to ripen with no hours at <10C by applying ethephon; and c) enclosed in paper bags as they ripened. Inducing ripening with ethephon increased total water-soluble reducing compounds and percentage inhibition of lipid oxidation of peel extracts, increased concentrations of α-tocopherol, carotenoids, and ascorbic acid in peel, but only slightly reduced scald. Delayed harvests increased all of these antioxidants except ascorbic acid and greatly reduced scald development. Bagging fruit before ripening decreased α-tocopherol, carotenoid, and ascorbic acid concentrations, decreased total water-soluble reducing compounds, and increased scald development. We conclude that changes in these antioxidants probably are affected more by ripening and light intensity than by low temperature before harvest. Chemical name used: (2-chloroethyl)phosphonic acid (ethephon).

Free access

Thomas C. Koch and Irwin L. Goldman

Carotenoids and tocopherols are health-functional phytochemicals that occur in a wide range of fruit and vegetable crops. These two classes of compounds are synthesized from a common precursor, geranyl-geranyl pyrophosphate, and are typically analyzed separately via high-performance liquid chromatography (HPLC) techniques. Because carotenoids and tocopherols are present in many edible horticultural crops, it would be advantageous to measure them simultaneously in plant tissues. Herein we report a one-pass reverse-phase HPLC method for extraction and analysis of carotenoids and tocopherols in carrot that can be extended to other high-moisture plant organs. Elution times ranged from 5 minutes for α-tocopherol to 24 minutes for β-carotene. This method improves the efficiency of analyzing these compounds by up to 50%, and should increase the efficiency of assessing carotenoid and tocopherol profiles in horticultural crops.

Full access

Vanessa E.T.M. Ashworth, Haofeng Chen, Carlos L. Calderón-Vázquez, Mary Lu Arpaia, David N. Kuhn, Mary L. Durbin, Livia Tommasini, Elizabeth Deyett, Zhenyu Jia, Michael T. Clegg, and Philippe E. Rolshausen

from ground level to the tip of the tree. Canopy diameter was determined at the widest part of the canopy in two orientations: parallel to the orchard row and perpendicular to the row, with the two values averaged. Fruit nutrient composition [α-tocopherol

Free access

Carlos Calderón-Vázquez, Mary L. Durbin, Vanessa E.T.M. Ashworth, Livia Tommasini, Kapua K.T. Meyer, and Michael T. Clegg

binding free radical intermediates. It acts as an inhibitor of platelet aggregation and protects lipids by preventing the oxidation of polyunsaturated fatty acids ( Traber and Stevens, 2011 ). In this study we are measuring α-tocopherol, the most

Free access

Charles R. Brown, David Culley, Meredith Bonierbale, and Walter Amorós

as nanoMoles of α-tocopherol equivalents/100 g FW. Statistical analysis. Analysis of variance following a randomized complete block design and Duncan's multiple range test was applied to the means ( Steel and Torrie, 1980 ). Correlations were

Free access

Shiva Ram Bhandari, Bo-Deul Jung, Hum-Young Baek, and Young-Sang Lee

presence of four tocopherol isomers, α-, β-, γ- and δ-tocopherols, but the absence of any tocotrienol form of vitamin E. Among the four tocopherol isomers, α-tocopherol was present in the highest quantity (55.2 to 218.4 mg·kg −1 ), accounting for more than

Free access

Jennifer L. Baeten, Thomas C. Koch, and Irwin L. Goldman

Carrot has been bred for increased levels of pro-vitamin E α-tocopherol. This vitamin is lipid soluble. Carrot root has been shown to have measurable levels of lipid, but it is not certain if the lipid level is correlated to α-tocopherol levels. The HPLC method is needed to quantify levels of α-tocopherol. Measuring lipids may be less time consuming in a breeding program. We developed a method for extracting lipids from carrot tissue based on the Soxhlet extraction method. The Soxhlet extraction uses a non-polar ether solvent to pull lipids out of freeze-dried tissue. A collection of carrot accessions ranging in α-tocopherol concentration 0.04–0.18 ppm and carotenoid concentration 10.63–1673.76 ppm were used in this investigation. Root tissue was freeze-dried and lipid levels were measured in an experiment with two replications. The mean lipid level of root tissue was 0.05 g fat/g tissue. The range was 0–1.1 g fat/g tissue. Phenotypic correlations were performed among lipid, α-tocopherol, and β-carotene concentrations in these samples. Twenty-four samples were tested for lipid levels (12 high and 12 low). From these results, percent lipid of the root was determined. Correlations were made between the lipid data and α-tocopherol data of the given samples.

Free access

Shiow Y. Wang and Hongjun Jiao

The effect of blackberries (Rubus sp.) genotypes on antioxidant activities against superoxide radicals (O2 ), hydrogen peroxide (H2O2), hydroxyl radicals (OH), and singlet oxygen (O,), was evaluated. The results were expressed as percent inhibition of active oxygen species production in the presence of fruit juice. The active oxygen radical absorbance capacity (ORAC) value referred to the net protection in the presence of fruit juice, and was expressed as micromoles of α-tocopherol, ascorbate, α-tocopherol, and β-carotene equivalents per 10 g of fresh weight for O2 , H2O2, OH, and O2, respectively. Among the different cultivars, juice of Hull' blackberry had the highest oxygen species, superoxide radicals (O2 ), hydrogen peroxide (H2O2), hydroxyl radicals (OH), and singlet oxygen (O2,) scavenging capacity. Different antioxidants have their functional scavenging capacity against active oxygen species. There were interesting and marked differences among the different antioxidants in their abilities to inhibit the different active oxygen species. β-carotene had by far the highest scavenging activity against O2 but had absolutely no effect on H2O2. Ascorbic acid was the best at inhibiting H2O2 free radical activity. For OH, there was a wide range of scavenging capacities with α-tocopherol the highest and ascorbic acid the lowest. Glutathione had higher O2 scavenging capacity compared to the other antioxidants.