Search Results

You are looking at 1 - 10 of 73 items for :

  • " Quercus rubra " x
  • Refine by Access: All x
Clear All
Free access

Mindy L. Bumgarner, K. Francis Salifu, Michael V. Mickelbart, and Douglass F. Jacobs

.F. Jacobs, D.F. 2008 Subirrigation of Quercus rubra seedlings: Nursery stock quality, media chemistry, and early field performance HortScience 43 2179 2185 Burdett, A.N. 1990 Physiological process in plantation establishment and development of

Free access

Mindy L. Bumgarner, K. Francis Salifu, and Douglass F. Jacobs

. Plant Physiol. 17 503 515 Davis, A.S. Jacobs, D.F. Overton, R.P. Dumroese, R.K. 2008 Influence of irrigation method and container type on Quercus rubra seedling growth and media electrical

Free access

K. Francis Salifu, Michael A. Nicodemus, Douglass F. Jacobs, and Anthony S. Davis

We evaluated suitability of chemical indices of three media formulations or substrates (A, B, and C) consisting of composted pine bark, coconut coir pith, sphagnum peatmoss, processed bark ash, and perlite in varied proportions for growing northern red oak (Quercus rubra L.) seedlings. These substrates were ranked according to their ability to promote seedling growth. The low-yielding substrate (A) was devoid of pine bark and perlite and the medium-yielding substrate (B) contained no peatmoss or processed bark ash. The high-yielding substrate (C) contained all components. Additionally, we tested plant response to high nitrogen (N) fertilization on each substrate. Media EC, pH, and total dissolved solids measured at transplanting explained 68%, 43%, and 66%, respectively, of the variation in plant dry weight and 39%, 54%, and 46%, respectively, of the variation in shoot height. Vector diagnosis effectively ranked nutritional limitations on seedling growth as N > P > K. High N fertilization highlighted element deficiency in seedlings grown on substrate A, but resulted in element toxicity and antagonistic interactions in plants established on substrates B and C, respectively.

Free access

D.D. Crunkilton, H.E. Garrett, and S.G. Pallardy

Ectomycorrhizal and nonmycorrhizal, glasshouse-grown northern red oak seedlings (Quercus rubra L.) received root treatments of IBA in starch, fired-montmorillonite clay, or starch-encapsulated montmorillonite clay. Clay proved to be superior to starch as a carrier for IBA, inducing significant increases in diameter, root length, leaf area, and shoot dry weight. Positive growth interactions between mycorrhizae and IBA were found with the clay carrier. The typical bare-rooted red oak seedling (grown for 1 year in nurseries and outplanted) performs poorly because of insufficient root size. Container-grown seedlings produced using clay/IBA treatments may perform better under field conditions than stock grown conventionally. Chemical name used: indole-3-butyric acid (IBA).

Free access

Francesco Loreto, Harold H. Burdsall Jr., and Alfio Tirro'

The effect of inoculating seedlings of Mediterranean cultivated trees grown under greenhouse conditions with North American isolates of Armillaria mellea (Vahl: Fr) Kumm. and A. ostoyae (Romagn.) Herink on net photosynthesis (A), stomatal conductance (gs), and water potential was examined. The effect of water stress was determined also on the same plant species independently and in combination with Armillaria infection. Red oak (Quercus rubra L.) was used as a control to indicate Armillaria virulence on North American trees. Carob (Ceratonia siliqua L.) was resistant to infection. Infection was successful in sour orange (Citrus aurantium L.), but A, gs, and water potential were unchanged over the 60-day experiment. In olive (Olea europea L.) and oak, A and gs were reduced following inoculation with A. mellea. A and gs of all species but carob were reduced under water stress. Olive and oak responses to water stress and Armillaria infection were quantitatively similar; however, the two stresses combined did not reduce A and gs further. Red oak was strongly susceptible to A. ostoyae infection, but Mediterranean trees were not infected by the same Armillaria isolate. Our results show that Armillaria infection may reduce A and gs in susceptible species.

Free access

John M. Englert, Keith Warren, Leslie H. Fuchigami, and Tony H.H. Chen

Desiccation stress during the postharvest handling of bare-root deciduous trees can account for dieback and poor regrowth after transplanting. Desiccation tolerance of three bare-root deciduous hardwood species was determined at monthly harvest intervals from Sept. 1990 through Apr. 1991. Among the three species tested red oak (Quercus rubra L.) was most tolerant to desiccation, followed by Norway maple (Acer platanoides L.) and Washington hawthorn (Crataegus phaenopyrum Medic.). Maximum desiccation tolerance of all three species occurred during the January and February harvests. Of 20 film-forming compounds tested, the antidesiccant Moisturin was the most effective in reducing water loss from bare-root trees during desiccation stress and in improving survival and plant performance during re-establishment in the laboratory, greenhouse, and field. Moisturin-treated plants lost up to 80% less water than untreated plants. Washington hawthorn seedlings treated with Moisturin before severe desiccating conditions had the highest survival, lowest dieback/plant, and highest root growth ratings. The results indicate that Moisturin is an effective means of overcoming postharvest desiccation stress in desiccation sensitive plants, such as Washington hawthorn.

Free access

Alison A. Stoven, Hannah M. Mathers, and Daniel K. Struve

Department of Agriculture. Species used in this study: Acer xfreemanii `Jeffersred' (Autumn Blaze® maple), Cercis canadensis L. (Eastern redbud), Malus `Prairifire' (Prairifire crabapple), Quercus rubra L. (Northern red oak)

Free access

Drew C. Zwart and Soo-Hyung Kim

temperature and average relative humidity maintained at 20.7 °C and 53.09%, respectively, until harvest 108 d post-inoculation. Maple treatment groups each consisted of 20 seedlings, randomly arranged on adjacent greenhouse tables. Red oak ( Quercus rubra

Free access

Jayesh B. Samtani, John B. Masiunas, and James E. Appleby

acetochlor + atrazine or s-metolachlor at the leaf unfolding stage. This article investigates more chloroacetanilide herbicides; determines if atrazine contributes to leaf tatters injury; and compares white and northern red oak injury ( Quercus rubra L

Free access

Taryn L. Bauerle and Michela Centinari

this study: Acer rubrum L. ‘Franksred’ ( Acer ), Carpinus betula L. ‘Columnaris’ ( Carpinus ), Gleditsia tricanthos L. var. inermis ‘Skycole’ ( Gleditsia ), and Quercus rubra L.‘Rubrum’ ( Quercus ). Three 2-year-old liner replicate trees (n