Search Results

You are looking at 1 - 10 of 25 items for :

  • " Malus hupehensis " x
  • Refine by Access: All x
Clear All
Open access

Ran Chen, Weitao Jiang, Haiyan Wang, Fengbing Pan, Hai Fan, Xuesen Chen, Xiang Shen, Chengmiao Yin, and Zhiquan Mao

contrast, few studies have focused on the prevention and reduction of ARD and compared the efficacy of different fumigants. In our study, apple rootstock Malus hupehensis seedlings were used in pot experiments to examine the effects of five fumigants on

Open access

Haiyan Wang, Ran Chen, Yuefan Sheng, Weitao Jiang, Rong Zhang, Xuesen Chen, Xiang Shen, Chengmiao Yin, and Zhiquan Mao

), and stomatal conductance ( g S ) ( F ) of Malus hupehensis Rehd. seedlings. SL = replanted sandy loam soil; FL = replanted loam soil; WL = replanted clay loam soil. SX = Sandy loam soil with methyl bromide fumigation; FX = Loam soil with methyl

Open access

Rong Zhang, Zhubing Yan, Yikun Wang, Xuesen Chen, Chengmiao Yin, and Zhiquan Mao

. harzianum to fruit trees, especially in the context of ARD. In our experiment, T. harzianum was used to make a microbial fertilizer. Malus hupehensis Rehd., a common apple rootstock, was used as the test material, and methyl bromide fumigation was used

Free access

Laura L. Benson, Warren F. Lamboy, and Richard H. Zimmerman

The U.S. National Plant Germplasm System (NPGS) currently holds 36 separate accessions of the `Yichang' clone of Malus hupehensis (Pamp.) Rehd. The `Yichang' clone originally entered the United States in 1908 as seed collected for the Arnold Arboretum by E.H. Wilson near Yichang, Hubei Province, China. The original description of M. hupehensis omits fruit characters, and botanists frequently augment these omissions with descriptions of the `Yichang' clone. Apomixis occurs in Malus, including M. hupehensis, and is strongly associated with elevated ploidy levels. Simple sequence repeats (SSRs) were used to characterize 65 accessions of M. hupehensis. To check for polyploidy, a set of M. hupehensis accessions was evaluated with flow cytometry. The simple sequence repeat phenotypes and ploidy information revealed the `Yichang' clone under various accession names in arboreta. It was neither known nor suspected that the U.S. National Plant Germplasm System held many duplicate accessions of the `Yichang' clone prior to their molecular characterization. Germplasm conservation decisions for Malus species can benefit from an increased knowledge of the genetic variation or lack thereof in naturalized populations and ex situ collections.

Free access

Laura L. Benson, Warren F. Lamboy, and Richard H. Zimmerman

Simple sequence repeats (SSRs) are highly polymorphic regions of DNA that can be used for the molecular characterization of apple (Malus) germplasm. SSR markers are sufficiently variable to distinguish between individual plants in wild Malus species. In this study, accessions of Malus hupehensis were screened for fragment length variation in PCR amplified simple sequence repeat regions of DNA. The fragment length phenotype produced by five SSR primer pairs showed no variation between two lineages of M. hupehensis collected in the Changjiang (Yangtse) River valley. One lineage was collected by E.H. Wilson in 1908 near the city of Ichang, Hubei Province. The second lineage was collected by cooperators at China's Southwest Agricultural University (SWAU) in 1997 near the city of Chongqing (Chungking). M. hupehensis Plant Introduction No. 588760 from the National Plant Germplasm System lacks provenance, but displays a fragment length phenotype identical to both the Wilson and SWAU lineages. The spread of a clone may be aided by asexual reproduction through seed, which is not uncommon in polyploid apples. Two seedlings each of 15 maternal trees from the SWAU lineage were assayed for ploidy level by flow cytometry. The DNA content per nucleus for all SWAU progeny fell within the range for triploids, 2.19 to 2.68 pg DNA/nucleus. It appears that plant explorers in China separated by almost 90 years have succeeded in sampling a single clonal lineage of M. hupehensis.

Free access

David C. Ferree

The apple (Malus ×domestica Borkh.) cultivars Starkspur Supreme Delicious and Melrose were planted in 1987 on eight apomictic apple rootstock selections made in Germany by Dr. Hanna Schmidt and on M.7. Selections 2 [M. hupehensis (Pamp.) Rehd. parentage] and 8 [M. sieboldii (Regel) Rehd. parentage] were similar to M.7 in precocity, cumulative yield per tree, and yield efficiency, while the other selections with M. sargenti Rehd. in their parentage were slower to flower and had lower yields and yield efficiencies. Selections 2 and 8 tended to result in larger trees than M.7, while the selections with M. sargenti parentage were generally similar to M.7 in size. Except for trees on M.7 and selection 2, `Starkspur Supreme Delicious' developed more severe symptoms of internal bark necrosis (IBN) than did `Melrose', which normally does not show IBN. However, `Melrose' showed IBN symptoms on selections with M. sargenti parentage. IBN symptoms were positively correlated with leaf Mn concentrations. Influence of rootstocks on other nutrient elements, although significant, were small compared to the effect on Mn. A significant interaction occurred between cultivar and rootstock in their effects upon branch morphology, mostly because fewer flowering spurs and more vegetative spurs were observed on `Melrose' than on `Starkspur Supreme Delicious' when grafted on Selection 2. These apomictic selections offered no advantage over M.7 as rootstocks for apples.

Open access

Haiyan Wang, Rong Zhang, Weitao Jiang, Yunfei Mao, Xuesen Chen, Xiang Shen, Chengmiao Yin, and Zhiquan Mao

.31%, respectively, compared with seedlings in the upper soil. Table 4. The biomass of Malus hupehensis Rehd. seedlings in different soil layers. Discussion The results of this experiment showed that soil microorganisms are mainly concentrated in

Free access

Shufu Dong and Huairui Shu

Malus hupehensis Reld apple rootstock seedlings and the rhizobox technique were used in this study. The seeds were collected from healthy mature trees at the Wanshougong Forest Farm in Shandong, China, stratified at 0 to 2 °C for 60 days, sown into growing medium with 1/3 loam soil+1/3 silt sand+1/3 compost manure, grown until the three-leaf stage, and then transplanted into rhizoboxes with four plants in each box. The rhizoboxes were inserted into the ground with the top of the boxes levelled with the soil surface. After the root mattress formed in the center of the box, plants were harvested by carefully dividing each box into rhizoplane, rhizosphere, and bulk soil, and mineral nutrients in each part were analyzed. The relationships were tested between the rhizoplane, rhizosphere, and bulk soil for each nutrent. Significant correlations were found for NH + 4, NO 3, K, Mg, Zn, and Cu in the rhizoplane, rhizosphere, and bulk soil. There were significant relationships for P and Ca between the rhizoplane and rhizophere, but not between the rhizoplane or rhizosphere and bulk soil. Fe in the rhizoplane closely related to Fe in the rhizosphere but not to Fe in bulk soil. No correlation was found between the rhizoplane and either rhizosphere or bulk soil, but close correlation existed between rhizosphere and bulk soil for Mn.

Free access

Tingting Sun, Tingting Pei, Zhijun Zhang, Mingjun Li, Linlin Huang, Cuiying Li, Xueyan Shi, Minghui Zhan, Xiaoyu Cao, Fengwang Ma, and Changhai Liu

Osmotic adjustments play a fundamental role in plant responses to water deficit. For apple (Malus domestica) trees growing in the primary production areas of China, drought and low phosphorus (P) levels are the main sources of abiotic stress. Although tolerance to drought and low P are important breeding goals for cultivar improvement, there is little information on natural variation within Malus for these traits or the molecular mechanisms that may mediate tolerance. In this study, it was found that in plants grown under conditions of osmotic and low P stress, electrolyte leakage and photosynthetic parameters were significantly higher, but chlorophyll concentrations were lower compared with nonstressed plants. These physiological indicators revealed that, under low P condition, the order of osmotic stress resistance (high to low) was Malus sieversii (Ms) → Malus prunifolia (Mp) → Malus hupehensis (Mh). Expression of the phosphorus transporter genes PHT1;7, PHT1;12, and PHT2;1 in the roots and PHT1;12 and PHT4;5 in the leaves was positively correlated with plant osmotic resistance. It is proposed that the highly expressed PHT genes might improve P absorption and transport efficiency, resulting in the high osmotic stress resistance under low P level conditions in Malus species.

Free access

Wanmei Jin, Qiang Zhang, Sunzhong Liu, Qinping Wei, Wanmei Jin, Zongming Cheng, Xiaohui Xue, and Tingzhen Yang

. Soc. Hort. Sci. 136 116 128 Wang, Y. Shang, Y.H. Wang, Y.X. Wei, X. Dong, W.X. 2008 Characteristics about embryo development of the hybridized offspring from ‘Pingyitiancha' [ Malus hupehensis (Pamp.) Rehd. var. pingyiensis Jiang] and ‘Shandingzi