Search Results

You are looking at 1 - 10 of 152 items for :

  • " Corylus " x
  • Refine by Access: All x
Clear All
Open access

Tiantian Zhao, Wenxu Ma, Qinghua Ma, Zhen Yang, Lisong Liang, Guixi Wang, and Lujun Wang

of Corylus are reported to be native to China ( Zhang et al., 2005 ), where their nuts have been collected as food for more than 5000 years ( Martins et al., 2014 ). C. heterophylla grows throughout Korea, Japan, China, and the Russian Far East

Free access

Veli Erdogan and Shawn A. Mehlenbacher

Eight Corylus L. (hazelnut) species were intercrossed in all possible combinations to reveal genetic relationships. Pollinations were made on either individually bagged branches or trees covered entirely with polyethylene using mixtures of pollen of five genotypes to minimize low cluster set due to single incompatible combinations. Percent cluster set, seed germination, and hybrid seedling survival were determined. Hybridity of seedlings was verified by inspection of morphological traits. Based on percent cluster set, seed germination, and hybrid seedling survival along with observed morphological similarities, Corylus species were placed in three groups: 1) the tree hazels C. colurna L. (turkish tree hazel) and C. chinensis Franchet (chinese tree hazel), 2) the bristle-husked shrub species C. cornuta Marshall (beaked hazel), C. californica (A.DC.) Rose (california hazel), and C. sieboldiana Blume (manchurian hazel), and 3) the leafy-husked shrub species C. avellana L. (european hazel), C. americana Marshall (american hazel), C. heterophylla Fischer (siberian hazel), and C. heterophylla Fischer var. sutchuensis Franchet (sichuan hazel). The two tree hazel species crossed with each other readily, as did the three bristle-husked shrub species. The frequency of blanks was low (<20%) for crosses of the tree hazels, and <50% for interspecific crosses within the group of bristle-husked species. The leafy-husked shrub species could be crossed with each other in all directions, although cluster set on C. heterophylla was low. For crosses of species belonging to different groups, set was generally low and the frequency of blanks high. Nevertheless, a few hybrid seedlings were obtained from several combinations. When used as the female parent, C. californica set nuts when crossed with all other species, indicating possible value as a bridge species. Crosses involving C. avellana were more successful when it was the pollen parent. In crosses with C. avellana pollen, cluster set on C. chinensis was better than on C. colurna and the frequency of blanks was much lower, indicating that it might be easier to transfer nonsuckering growth habit from C. chinensis than from C. colurna. Reciprocal differences in the success of crosses was observed. The following crosses were successful C. californica × C. avellana, C. chinensis × C. avellana, C americana × C. heterophylla, C. cornuta × C heterophylla, C. californica × C. colurna, and C. americana × C. sieboldiana, but the reciprocals were not.

Free access

John M. Capik and Thomas J. Molnar

The genus Corylus represents a diverse group of temperate woody plants, all of which produce edible nuts. The genus comprises anywhere from nine to 25 species depending on the taxonomic study with current revisions suggesting 11 to 13 polymorphic

Free access

Salih Kafkas, Yıldız Doğan, Ali Sabır, Ali Turan, and Hasbi Seker

The genus Corylus belongs to the Betulaceae of the order Fagales. The number of species in the genus has varied depending on the authorities due to recognition of some species as a distinct species or a subspecies, or within a certain species

Free access

Thomas J. Molnar, Joseph C. Goffreda, and C. Reed Funk

Anisogramma anomala (Peck) E. Müller is the incitant of the disease eastern filbert blight (EFB), which causes severe cankering, branch dieback, and the death of most European hazelnuts, Corylus avellana L. It is an obligate biotrophic

Open access

Ryan J. Hill, David R. King, Richard Zollinger, and Marcelo L. Moretti

The natural form of European hazelnut ( Corylus avellana L.) is a multistemmed bush. Hazelnuts can be trained into single-trunk trees, which facilitates mechanized orchard maintenance and harvest, increasing yield ( Mehlenbacher and Smith, 1992

Free access

V. Erdogan and S.A. Mehlenbacher

Interspecific hybridization, pollen-stigma incompatibility, and DNA sequence analysis were used to study the relationships among hazelnut (Corylus) species. Interspecific crosses resulted in a wide range of cluster set from 0% to 65%. Reciprocal differences were common. In general, crosses involving C. avellana and C. heterophylla were more successful when used as pollen parents, but crosses involving C. americana were more successful when it was the female parent. C. cornuta, C. californica and C. sieboldiana intercrossed freely in both directions, as did C.colurna and C.chinensis. The Asian species, C. sieboldiana, C.heteropyhlla, and C. chinensis, were not cross-compatible with each other. Fluorescence microscopy showed that pollen-stigma incompatibility exists within and among wild hazelnut species, in addition to the cultivated European hazelnut C. avellana. Pollen-stigma incompatibility and embryo abortion (blank nuts) appear to be major blocks to interspecific gene flow. In addition, the chloroplast matK gene and the Internal Transcribed Spacer (ITS) region of the nuclear ribosomal DNA (nrDNA) were amplified and sequenced. The matK sequence was highly conserved and thus was not informative. However, the ITS sequence was highly informative and parsimony analysis agreed with morphological similarities. Corylus species were placed into four groups: 1) C. avellana, C. maxima, C. americana and C. heterophylla 2) C. colurna, C.chinensis, and C. jacquemontii 3) C. cornuta, C. californica and C. sieboldiana 4)C. ferox.

Free access

Patricia R. Knight, James R. Harris, and Jody Fanelli

Bareroot Corylus colurna were grown in 7.5-liter containers from 11 Apr. until 27 June 1994. The growing medium was fritted clay. Fertility levels included no fertilization, 100 ppm N, or 200 ppm N. Plants were root pruned to remove none or one-quarter to one-half of the primary roots. Root pruning at any level resulted in decreased height, shoot, and root dry weights and number and length of new shoots. One-quarter primary root removal resulted in lower root: shoot ratios compared to plants that were unpruned. One-half primary root removal further reduced root: shoot ratios. One-half primary root removal also reduced total leaf area compared to unpruned controls. Fertilization at 200 ppm N increased leaf numbers and total leaf areas compared to plants receiving no fertilization.

Free access

William M. Proebsting, Nahla V. Bassil, and David A. Lightfoot

Propagation of Corylus avellana stem cuttings may be limited by either root initiation or bud abscission. We divided juvenile shoots of 3 varieties growing in layering beds in mid-July into 4 or 5 3-node cuttings with leaves at the upper two nodes, except that terminal cuttings had one expanded leaf. Cuttings were treated with 5 mM IBA in 50% EtOH, a mixture of A. rhizogenes strains A7 + 22 or left untreated. IBA and bacteria stimulated rooting of cuttings from all shoot positions. Rooting of the terminal cuttings (<50%) was less than that of the sub-terminal cuttings (>80%). Bud retention was <50% on terminal cuttings, nearly 100% on sub-terminal cuttings. Using juvenile stock plants of various varieties, sub-terminal cuttings treated with Agrobacterium or 5 mM IBA may yield 70-90% cuttings with both roots and buds, Agravitropic roots, characteristic of genetic transformation, were observed on Agrobacterium-treated cuttings. Dot blots probed for TL-DNA were negative, however.

Free access

William M. Proebsting, Nahla V. Bassil, and David A. Lightfoot

Propagation of Corylus avellana stem cuttings may be limited by either root initiation or bud abscission. We divided juvenile shoots of 3 varieties growing in layering beds in mid-July into 4 or 5 3-node cuttings with leaves at the upper two nodes, except that terminal cuttings had one expanded leaf. Cuttings were treated with 5 mM IBA in 50% EtOH, a mixture of A. rhizogenes strains A7 + 22 or left untreated. IBA and bacteria stimulated rooting of cuttings from all shoot positions. Rooting of the terminal cuttings (<50%) was less than that of the sub-terminal cuttings (>80%). Bud retention was <50% on terminal cuttings, nearly 100% on sub-terminal cuttings. Using juvenile stock plants of various varieties, sub-terminal cuttings treated with Agrobacterium or 5 mM IBA may yield 70-90% cuttings with both roots and buds, Agravitropic roots, characteristic of genetic transformation, were observed on Agrobacterium-treated cuttings. Dot blots probed for TL-DNA were negative, however.