Search Results

You are looking at 1 - 10 of 154 items for :

  • " Chrysanthemum morifolium " x
  • Refine by Access: All x
Clear All
Full access

Min Fan, Yike Gao, Yaohui Gao, Zhiping Wu, Hua Liu, and Qixiang Zhang

Chrysanthemums ( Chrysanthemum × morifolium Ramat.) are common flowers that possess substantial aesthetic value. They are cultivated all over the world and are important economic ornamentals that comprise a considerable proportion of the flower

Free access

M. Kate Lee and Marc W. van Iersel

As a result of the decreasing availability of high-quality irrigation water, salinity tolerance of greenhouse crops is of increasing importance. Saline irrigation water can have many negative effects on plants, but also has the potential to act as a growth regulator because of its ability to reduce plant height. To determine the effects of NaCl in the irrigation water on the growth, physiology, and nutrient uptake of chrysanthemums (Chrysanthemum ×morifolium Ramat.), plants were watered with solutions with different NaCl concentrations (0, 1, 3, 6, or 9 g·L−1). Plants receiving 9 g·L−1 NaCl had a 76% reduction in shoot dry weight, a 90% reduction in stomatal conductance (g S), and a 4-day delay in flowering compared with control plants. Chrysanthemums receiving 1 g·L−1 NaCl had a 4-cm reduction in height with only a small reduction in shoot dry weight. Stomatal conductance and transpiration were reduced by more than 60% by NaCl concentrations of 1 g·L−1 as compared with control plants. The combination of a small reduction in dry weight and a large decrease in transpiration resulted in increased water use efficiency when plants received 1 g·L−1 NaCl. Concentrations of 3 g·L−1 NaCl or higher resulted in poor-quality plants either as a result of wilting of the leaves (3 g·L−1) or severely stunted plants (6 and 9 g·L−1). Our findings indicate that chrysanthemums can be grown successfully with 1 g·L−1 NaCl in the irrigation water without negative impacts on plant quality. This has important implications for the greenhouse industry as the availability of nonsaline water decreases. Saline water may be more readily available and can have the added benefit of reduced plant height, which is an important quality characteristic for floriculture crops.

Free access

Rida Shibli, L. Art Spomer, and Mary Ann Lila Smith

Osmotic adjustment in response to decreasing media water availability was observed for in vitro Chrysanthemum morifolium Ramat. cultivars Bright Golden Anne, Deep Luv, and Lucido. Water stress was induced by increasing sorbitol (0, 0.1, 0.2, 0.3, 0.4 M), mannitol (0, 0.1, 0.2, 0.3, 0.4 M), and sucrose (30, 45, 60, 75, 90 g·l-1) concentrations in modified MS media (2 mg·l-1 BA and 0.1 mg·l-1 NAA). Osmotic adjustment was evidenced by a significant reduction in measured cell sap osmotic potential (R2 = 0.78, 0.96, 0.91 for sucrose, sorbitol, and mannitol respectively) in all cultivars. Shoot length, weighted density (apparent mass), and proliferation were significantly reduced by sorbitol and mannitol treatments. Sucrose reduced shoot proliferation, increased length, and had an inconsistent effect on weighted density. Cultures grown on media without hormones showed tremendous increase in root number up to 60 g·l-1 sucrose. Sorbitol had a negligible effect on rooting at 0.1 M but no roots developed at higher sorbitol concentrations or in any mannitol treatments. Plants transferred to a non-water-stress media after they had experienced in vitro water stress exhibited no change in osmotic properties from the stress treatments.

Free access

Janni Bjerregaard Lund, Theo J. Blom, and Jesper Mazanti Aaslyng

Chrysanthemum morifolium ‘Coral Charm’ during 3 weeks of daily treatments of 30 min each. se is based on the means of three plantings (n = 36). Regressions lines that were not significantly different were pooled (R con and FR con = 0.4), so data represent

Free access

Susan E. Trusty, William B. Miller, and Dale Smith

In order to more fully understand flower growth and development, we are interested in carbohydrate partitioning and metabolism in floricultural crops. In recent work with Chrysanthemum, we noted the occurrence of several early-eluting carbohydrate peaks (as detected by HPLC with a resin-based column in the calcium form). These peaks were present in flowers and stems, and in lesser amounts in leaves. Acid hydrolysis of the unknowns liberated large amounts of fructose and much smaller amounts of glucose, indicating that these peaks are fructans, or medium chain-length fructose polymers. Fructans represented 10% and 25% of the carbohydrate in a 12:5:3 methanol: chloroform: water extract of leaves and stems, respectively. Flower petals were extracted with 95%. ethanol, then with water. Fructans accounted for more than 40'% of the water soluble carbohydrate in flower bud tissue. It is likely that fructans serve as a major reserve carbohydrate in Chrysanthemum. Additional studies are underway to better characterize flower petal fructans, and to understand their role in flower development.

Free access

D.H. Willits, P.V. Nelson, M.M. Peet, M.A. Depa, and J.S. Kuehny

The results of six experiments conducted over 3 years were analyzed to develop a relationship between nutrient uptake rate and growth rate in hydroponically grown Dendranthema ×grandiflorum (Ramat.) Kitamura, cv. Fiesta. Plants subjected to two levels of CO, and three levels of irradiance in four greenhouses were periodically analyzed for growth and the internal concentration of 11 mineral elements. The resulting data were used to determine relative accumulation rate and relative growth rate, which were included in linear regression analyses to determine the dependence of uptake on growth. The regression equations were significant, with a slight trend toward nonlinearity in some elements. This nonlinearity seems to be related to the aging of the plant and suggests a process in the plant capable of controlling uptake rate, perhaps as a result of changes in the rate of formation of different types of tissues.

Free access

Meriam G. Karlsson and Royal D. Heins

The relative progression of lateral shoot elongation from pinch to flower of chrysanthemum [Dendranthema grandiflora (Ramat.) Kitamura `Bright Golden Anne'] plants grown under 2 to 22 mol·day-1·m-2 photosynthetic photon flux and 10 to 20C was modeled using Richards function. Parameters for the function were determined by first transforming data of shoot length and time from pinch (start of short photoperiods) to flower to a relative scale of 0.0 to 1.0 by dividing all intermediate shoot lengths and measurement dates by final shoot length and number of days to flower, respectively. Data used for parameter estimation originated with plants grown at a daily average of ≤20C, since those grown at a daily average above 20C exhibited delayed morphological flower induction and reached 50% of the final shoot length earlier in development. Relative shoot elongation was described by Richards function in the following form: Relative shoot length = SF × {1 + [(SF/SO)N-1] e-SF Kt}-1/N where t (relative time) = 0.0 to 1.0, SF (maximum relative shoot length) = 1.018, SO (relative shoot length at t = o) = 0.0131, N (model parameter related to the shape of the curve) =0.3923, and K (model parameter related to mean relative growth rate) = 5.8138.

Free access

Kenneth E. Cockshull and Anton M. Kofranek

Garden chrysanthemums [Dendranthemum ×grandiflorum (Ramat.) Kitamura] are characterized by early flowering in September and October when grown out-of-doors and by rapid flowering in short days (SD). However, as rooted cuttings of these cultivars frequently have flower buds present at the time of planting, their true response to daylength cannot readily be determined. Vegetative shoots were obtained by growing rooted cuttings in long days (LD), removing the terminal bud, and then pinching the emerging side shoots at a very early stage. On transfer to SD, the vegetative secondary side shoots quickly initiated flower buds that developed to anthesis more rapidly than those of `Bright Golden Anne' (BGA), a lo-week response group cultivar. `Bandit', `Buckeye', `Compatriot', `Freedom', `Jackpot', and `Sunburst Cushion' appeared to be in the 7-week response group, with `Baby Tears' in the 6-week and `Powder River' in the 8-week response groups. All cultivars rapidly initiated flower buds in LD and, although they produced significantly more leaves than in SD, flower initiation began within ≈13 LD from pinching. When pinched twice and grown using black cloth in summer, garden chrysanthemums can form attractive, uniformly flowering pot plants. Their rapid-flowering characteristic could also be of value in breeding programs for cut-flower chrysanthemums.

Free access

Nihal C. Rajapakse and John W. Kelly

The role of light quality and quantity in regulating growth of vegetative Dendranthema × grandiflorum (Ramat.) Kitamura was evaluated using CuSO4 solutions and water (control) as spectral filters. Copper sulfate filters increased the red (R): far-red (FR) and the blue (B): R ratios (R = 600 to 700 nm; FR = 700 to 800 nm; B = 400 to 500 urn) of transmitted light. Photosynthetic photon flux (PPF) under 4%, 8% and 16% CuSO4 filters was reduced 26%, 36%, and 47%, respectively, from natural irradiance in the greenhouse, which averaged ≈ 950 μmol·m-2·s-1. Control treatments were shaded with Saran plastic film to ensure equal PPF as the corresponding C uSO4 chamber. Average daily maxima and minima were 26 ± 3C and 16 ± 2C. At the end of the 4-week experimental period, average height and internode length of plants grown under CuSO4 filters were ≈ 40% and 34% shorter than those of plants grown under control filter. Reduction in plant height and internode length was apparent within 1 week after the beginning of treatment. Total leaf area (LA) was reduced by 32% and leaf size (LS) was reduced by 24% under CuSO4 filters. Specific leaf weight (SLW) was higher under CuSO4 filters than for the controls. Irradiance transmitted through CuSO4 filters reduced fresh and dry leaf weights by 30%. Fresh and dry stem weights of plants grown under CuSO4 filters were 60% lower than those of controls. Relative dry matter accumulation into leaves was increased in plants grown under CuSO4 filters while it was reduced in stems. A single application of GA3 before irradiation partially overcame the height reduction under CuSO4 filters, suggesting GA biosynthesis/action may be affected by light quality. Our results imply that alteration of light quality could be used to control chrysanthemum growth as an alternative method to conventional control by chemical growth regulators. Chemical names used: gibberellic acid (GA)

Free access

Susan E. Trusty and William B. Miller

Postproduction changes in carbohydrate types and quantities in the leaves, stems, and inflorescences of pot chyrsanthemums [Dendranthema × gramfiflorum (Ramat.) Kitamura `Favor'] placed in interior conditions were investigated. Fructans, sucrose, glucose, and fructose were present in all plant parts. In inflorescences and leaves, an additional unidentified substance was present. All plant parts decreased in dry weight during the postproduction evaluation. This decrease was accompanied by overall reductions in total soluble carbohydrates (TSC) and starch. The appearance of leaves and stems was acceptable throughout the experiment. Leaves lost significant amounts of TSC during the first 4 days postproduction (DPP), due primarily to a 76% decrease in sucrose concentration. After 4 DPP, leaf and stem TSC remained relatively unchanged. In inflorescences, petal expansion continued through 12 DPP. Visible signs of senescence, including loss of turgor, color changes, and inrolling of petal edges were observed at 20 DPP, and by 28 DPP, the plants were determined unacceptable for consumer use. Inflorescences increased in fresh weight, but not dry weight, during petal expansion, then each decreased. Inflorescence TSC fell from 146 mg.g-1 dry weight at O DPP to 11 mg.g-1 at 28 DPP. Reducing sugars accounted for 84% of the inflorescence TSC at 4 DPP, dropping to 48% at 28 DPP. Fructan concentration decreased through 16 DPP and then remained unchanged, while starch levels rose from 25 to 34 mg·g -1 dry weight through 12 DPP, then decreased. Fractans decreased in polymerization during petal expansion. This result suggests an alternate use of fructans and starch as pools of available reserve carbohydrate during petal expansion in chrysanthemum.