. Shearman, R.C. 2009 Buffalograss ( Buchloe dactyloides ) turfgrass performance and seed yield characteristics Intl. Turfgrass Soc. Res. J. 11 519 532 Beard, J.B. 1973 Turfgrass science and culture. Prentice Hall, Englewood Cliffs, NJ. Beetle, A.A. 1950
Stolon nodal segments of Buchloe dactyloides (Nutt.) Engelm. were removed from greenhouse grown plants and placed on Gamborg's B5 medium in order to determine nodal position and 2,4-D level required to give maximum callus initiation. 2,4-D levels used were 5uM, 16uM, 35uM, and 50uM. Six nodal segments were grouped according to position on the stolon, from the most recent node (node one) to the basal node (node 6). It was concluded that node 4 gave statistically greater callus mass than nodes 1, 2, 3, 5, and 6. Increasing levels of 2,4-D suppressed callus initiation, with maximum response occurring at 5uM 2,4-D.
The polymerase chain reaction (PCR) and RAPD fragments are potentially useful methods for identifying turfgrass cultivar breeding lines. RAPD markers were studied in 25 vegetatively propagated buffalograss lines using oligonucleotide random primers and agarose-gel electrophoresis to determine their potential for identifying cultivar breeding lines. The variation of RAPD markers was extensive. The RAPD markers produced by one random primer were sufficient to separate the 25 buffalograss lines. Cluster analysis baaed on' the RAPD markers produced by two random primers revealed that the 25 buffalograss lines generally fell into two groups: diploid and hexaploid. Three DNA extraction methods—sarcosyl lysis-chloroform extraction-isopropanol precipitation, sodium dodecyl sulfate (SDS) lysine-isopropanol precipitation, and boiling in the presence of Chelex-100 resin—and fresh or oven-dried tissues were tested for reproducibility of RAPD markers. The three DNA extraction methods, using dry or fresh plant tissues, produced highly comparable RAPD marker profiles. More than 80%1 of the RAPD markers was consistently detected in six replicate analyses. The above studies demonstrate that small quantities (5 mg) of oven-dried leaf tissue and several DNA extraction methods can be used for buffalograss fingerprint studies.
Buffalograss is native to the Great Plains of North America. Its excellent drought resistance and low growth habit make it a good choice for a low-maintenance turf. A reproducible and efficient regeneration protocol of buffalograss is critical for further genetic transformation. By using immature inflorescences as explants, we have achieved the regeneration of buffalograss of two female clones, `315' and `609', a male clone, NE 84-45-3, and a synthetic cultivar, `Texoka'. Somatic embryogenesis was observed. The medium used for callus initiation was MS basal medium supplemented with various concentrations of 2,4-D and BA. After 4 weeks of dark culture, calli with nodular structures were transferred to the same basal medium supplemented with BA and either a reduced rate of 2,4-D or no 2,4-D. It was demonstrated that 2,4-D at 2 or 3 mg/L is optimal for embryogenic callus production. The presence of BA from 0.1 mg/L to 0.5 mg/L was required for the regeneration of `315', `609', and NE 84-45-3. For `Texoka', 2,4-D at 0.5 mg/L with BA at 0.3 mg/L in the regeneration medium favored normal development of somatic embryos that were capable of germination. A genotypic effect was observed with regard to embryogenic callus production; explants of the male genotype NE 84-45-3 exhibited a higher percentage of embryogenic callus formation than was found for the two female genotypes. A significant seasonal effect was also observed with inflorescences collected in early May exhibiting a higher percentage of callus formation than those collected in the summer and fall.
The use of random amplified polymorphic DNA (RAPD) markers has been shown to be a potentially useful technique for identifying buffalograss breeding lines. Analysis of RAPD markers has also revealed considerable variation within, as well as among, each of four natural buffalograss populations surveyed. Identification of genetic markers for quantitative traits, such as physiological components of tolerance to salt stress, can provide important information for plant improvement programs. The objectives of this study were to develop DNA fingerprints for buffalograss clones selected from an in vitro seedling screening program for survival at high NaCI (200–250 mM) levels, identify markers for future analysis, and assess the variability among the lines. DNA was extracted from leaves of 10 salt-selected and 15 non-selected buffalograss clones. Fifty-two 10-mer primers were screened for ability to produce bands with DNA from four clones as visualized on ethidium-stained agarose gels. Bands were most reproducible with a genomic template DNA concentration of 1 ng–μl–1 reaction volume. Primers selected for ability to produce a moderate number of clear bands were used to produce RAPD profiles of the 25 clones. Abundant polymorphism to distinguish among clones was found. Four primers produced a total of 45 polymorphic markers. The primer 5′-CGGAGAGCCC-3′ produced 11 readily scored markers, allowing identification in 94.67% of pair-wise comparisons. As a group, RAPD profiles of salt-selected clones are more variable than non-selected clones from the same population; however, no unique pattern of markers generated by primers screened to date differentiates all salt-selected clones from the non-selected group.
Buffalograss [Buchloë dactyloides (Nutt.) Engelm] is a drought-resistant, dioecious species, native to the Central Great Plains, which shows excellent potential as a low-maintenance turfgrass. Although buffalograss can be propagated vegetatively, there is a need for seeded turf-type cultivars. To assist in developing seeded cultivars, heritabilities of turf characteristics were estimated. Heritabilities from maternal half-sib analyses ranged from h2 = 0.04 ± 0.03 for the 1988 uniformity rating to h2 = 0.62 ± 0.26 for the 1989 spring color rating. Heritability estimates calculated from offspring-parent regression were also variable and generally lower than maternal half-sib analysis. The results suggest that some turf characteristics are highly heritable and that growing conditions markedly affect heritability estimates.
Buffalograss [Buchloë dactyloides (Nutt.) Engelm.] is a warm-season perennial grass native to the North American Great Plains region and has been used as a low-maintenance turfgrass. Turf-type buffalograsses are available and are commonly used on nonirrigated land. Our objectives were to determine the deepest planting depth of burrs that would allow acceptable emergence, and to evaluate planting depth effects on buffalograss seedling morphology. Two greenhouse experiments were conducted in Fall 2000. Experimental design was a randomized complete block with 4 replications and a 3 (cultivar) × 6 (planting depth) factorial treatment arrangement. Results showed that buffalograss emergence decreased as planting depth increased. All cultivars had <10% total emergence at planting depths >50 mm. Emergence rate indices were greatest when planting depth was 13 mm and were significantly lower at planting depths of 51 and 76 mm. Average coleoptile length was 11 mm. Coleoptile length was similar between all planting depths except for the 13 mm depth which resulted in 9-mm-long coleoptile. Subcoleoptile internode length increased with planting depth up to 38 mm. Planting depths deeper than 38 mm did not significantly increase subcoleoptile internode length.
Rooting characteristics of 22 buffalograss [Buchloë dactyloides (Nutt.) Engelm.] genotypes were determined by growing plants in clear, sand-filled polyethylene tubes in a glasshouse. Differences were observed among entries for average maximum root depth, total root weight, root count and weight at increasing 100-mm depth increments, and total shoot weight. Average maximum root depth was positively correlated with total root weight (r = 0.59) and with root count at each 100-mm root profile depth. Root count and weight across all vertical root profile sections were highly correlated (r = 0.81). Total shoot weight was weakly correlated with average maximum root depth but not at all with total root weight. Grasses with superior rooting characteristics (deeply rooted, with larger root mass and count in the lower root profile sections) included AZ-143, NTDG-1, and `315' (NE84-315).
Field studies were conducted in consecutive years to evaluate the influence of seeding month and seed soaking on buffalograss [Buchloë ductyloides (Nutt.) Engelm.] establishment, as measured by percentage of coverage and seedling emergence. In 1991, plots where `Sharp's Improved' buffalograss burrs were seeded in May, June, or July exhibited complete coverage 7 weeks after seeding (WAS). Between Apr. and Sept. 1992, mean high and low temperatures were ≈ 3C cooler than in 1991, and seeding in June or July resulted in >95% coverage 9 WAS. In the same year, seeding in April or May required 12 to 13 weeks for complete coverage. Buffalograss seeded in August exhibited <25% coverage by the end of the first growing season. Soaking buffalograss burrs in water before seeding resulted in the emergence of >30% more seedlings 2 WAS compared with nonsoaked burrs and increased coverage by up to 18% on selected rating dates 3 to 13 WAS. However, complete coverage occurred only ≈ week sooner where soaked vs. nonsoaked burrs were planted.
Although transplanted trees typically establish and grow without incident in frequently irrigated turfgrass, their performance in precisely irrigated turfgrass in an arid climate is not known. We investigated the effect of precision irrigation scheduling on growth and water relations of balled-and-burlapped littleleaf linden (Tilia cordata Mill. `Greenspire') planted in buffalograss (Buchloë dactyloides [Nutt.] Engelm. `Tatanka') and kentucky bluegrass (Poa pratensis L.). Over 2 years, trees in turfgrass were irrigated either by frequent replacement based on local reference evapotranspiration, or precision irrigated by estimating depletion of soil water to the point of incipient water stress for each turfgrass species. Predawn leaf water potential and stomatal conductance of trees were measured during first-year establishment, and predawn leaf water potential was measured during a mid-season water-deficit period during the second year. Trunk diameter growth and total tree leaf area were measured at the end of each year. Values of predawn leaf water potential and stomatal conductance of trees in precision-irrigated buffalograss were lower (–0.65 MPa, 25.3 mmol·m–2·s–1) than those of trees in the other treatments near the end of the first growing season. The longer interval between precision irrigations resulted in mild water stress, but was not manifested in growth differences among trees across treatments during the first season. During the water-deficit period of the second year, there was no evidence of stress among the trees regardless of treatment. At the end of the second season, total leaf area of trees grown in precision-irrigated kentucky bluegrass (1.10 ± 0.34 m2) was 46% of that of trees grown in buffalograss (2.39 ± 0.82 m2) that were irrigated frequently. Trunk diameter growth of trees in frequently irrigated kentucky bluegrass (1.91 ± 2.65 mm) was 29% of that of the trees grown in buffalograss (6.68 ± 1.68 mm), regardless of irrigation treatment, suggesting a competition effect from kentucky bluegrass. We conclude that frequent irrigation of balled-and-burlapped trees in turfgrass, particularly buffalograss, is more conducive to tree health during establishment than is maximizing the interval between turfgrass irrigation. Regardless of irrigation schedule, kentucky bluegrass appears to impact tree growth severely during establishment in an arid climate.