Search Results
study were to assess phytotoxicity at a range of cyanamide concentrations and determine the potential benefit of using cyanamide to hasten flowering and reduce bloom duration of citrus in south Florida. This work was discontinued due to a change in
A common practice in highbush blueberry (Vaccinium corymbosum L.) culture is to use combinations of insecticides and fungicides to reduce the number and cost of pesticide applications. In response to apparent phytotoxicity observed in commercial fields that were treated with combinations of diazinon and captan formulations, phytotoxicity of two formulations of diazinon (Diazinon AG600 and Diazinon 50W) and captan (Captan 80WP and Captec 4L) was investigated on highbush blueberries during 1997 and 1998. Phytotoxicity injury similar to injury observed in commercial fields was reproduced in treatments with diazinon and captan mixtures in all experiments. The Diazinon AG600 and Captec 4L mixture was the most severe and caused significantly more phytotoxic-ity to fruit and leaves than individual treatments of Diazinon AG600, Captec 4L or untreated control. Separation of diazinon and captan applications by 8 h significantly reduced phytotoxicity compared to mixture treatments. Injured fruit and leaves recovered over time and most treatments showed only a mild injury at the time of harvest. Phytotoxicity on fruit and leaves caused by Diazinon AG600 and Captec 4L mixture was significantly affected by application date with the earliest application causing the greatest injury. These data indicate that diazinon and captan mixtures cause phytotoxicity on highbush blueberries and therefore the two should not be applied in combination.
Horticultural oil and insecticidal soap were as effective as conventional insecticides and miticides in controlling a variety of sap-feeding insects and mites on common greenhouse crops. Neem extract (Margosan-O or Azatin) was less consistent and provided intermediate to good control of a variety of sap-feeding insects and mites on common greenhouse crops. Except for purple heart (Setcreasea purpurea K. Schum. & Sydow) and wax ivy (Hoya carnosa R. Br.), repetitive sprays of horticultural oil, insecticidal soap, and neem extract (Azatin) did not seem to cause any noticeable phytotoxicity or effect the growth of 52 species or cultivars of bedding plants and 13 species of foliage plants examined in this study. Repetitive sprays of horticultural oil and insecticidal soap significantly affected plant height and final quality of some poinsettia cultivars evaluated in this study.
of ornamental crop plants. “Phytotoxicity” is defined as the temporary or long-lasting effects of a compound (e.g., a pesticide) on plants ( European and Mediterranean Plant Protection Organization, 2014 ). Above levels causing plant stress, reduction
the turfgrass. Most conventional hydraulic fluids are phytotoxic to turfgrass and, if the leak is not detected and turf not immediately remediated, can create extensive turfgrass necrosis ( Johns and Beard, 1979 ). Conventionally, hydraulic fluids are
nematicide, it was also important to determine whether it was harmful to seedlings of vegetable crops. Clove oil, and its primary constituent eugenol, have been reported to have phytotoxic effects ( Bainard et al., 2006 ; Boyd and Brennan, 2006 ; Boyd et al
of insecticides in retention ponds has the potential to induce phytotoxicity. Fungicides . Nursery managers often apply various fungicides to protect crops from a wide range of fungal diseases. Although fungicides may be effective at controlling
phytotoxicity concerns associated with many postemergence herbicides make preemergence herbicide applications even more important. Few research trials have focused on the phytotoxic effect of preemergence herbicides on evening primrose species. Richardson and
) leaves ( Copes, 2009 ). Consistent dosing of water with H 2 O 2 leads to the exposure of crops to H 2 O 2 during irrigation events and brings the potential for a phytotoxic response if excessive concentrations are circulated. Exposure of crops to H 2 O
Home remedies for pest and disease problems experienced by plant consumers abound on blogs, forums, and social media groups. However, neither the threshold for phytotoxicity nor efficacy of most of these treatments has been subjected to evaluation