Search Results

You are looking at 1 - 10 of 131 items for :

  • HortTechnology x
Clear All

PT method as described by Wright (1986) and adapted by Cavins et al. (2008) is as follows. The crop should be irrigated 30 to 60 min before collecting leachate to ensure that the container substrate is at or near full water-holding capacity. If

Full access

volume of water leached per plant increased with increasing NaCl in the irrigation water because the plants could be salt stressed, and thus had higher leaching rates ( Table 1 ). Leachate volumes per plant were 1.6 and 2.2 times higher in T 2 and T 3

Full access
Author:

. Second, as a result of irrigation in amenity landscapes with various plant forms, amounts of leachate were measured in each plant combination. Water percolating downward and potentially recharging groundwater in amenity landscapes has not been measured in

Free access
Authors: and

was set to a constant 19 °C, and plants were grown under natural lighting from 28 Oct. 2012 to 18 Jan. 2013. Data collection. During the experimental period, substrate leachate was collected weekly using the nondestructive PourThru extraction method

Open Access

with a wider range of release rate. The objective of this study was to determine the effects of four formulations of CRF, including two with new polymer coating technology, on leachate pH and electrical conductivity (EC), and plant growth of two species

Full access
Authors: and

Five container substrates—3 pine bark (PB) : 1 peat (PT) : 1 sand (SD), 3 PB : 1 recycled paper (RP) : 1 SD, 2 PB : 2 RP : 1 SD, 3 vermiculite (VM) : 1 RP : 1 SD, and 2VM : 2 RP : 1 SD—were used to grow rose-of-sharon (Hibiscus syracus L. `Double Purple') and forsythia (Forsythia ×intermedia Zab. `Lynwood Gold') for 4.5 months. The control substrate (3 PB:1 PT:1 SD) had higher concentrations of NH4 * in leachate than other substrates at each of four sample times during the growing season except 4 Aug. Leaf number and leaf area per plant and height of rose-of-sharon were greater and the leaf area per leaf was smaller in all substrates containing recycled paper than in substrates without recycled paper. Forsythia plants had greater stem and root dry weights and were taller in substrata without recycled paper than plants in substrates with recycled paper. Processed recycled paper is a possible component for container nursery plant production, but further testing on a large number of species is needed before widespread implementation.

Full access

Woven polypropylene groundcloth is used extensively in plant nurseries as a permeable and durable surface for container plant production. To better understand the fate of overhead sprinkler irrigation water, we designed and constructed runoff platforms (2.7 m2) to measure runoff and leachate from single irrigation events as affected by slope and underlay substrates. Groundcloth-covered platforms at slopes of 1.5% and 11% were tested with each of five underlay treatments: no underlay, coarse sand, 50% coarse sand and 50% no underlay (CS50), gravel, and native sandy soil. We applied 0.9 cm of irrigation at 1.8 cm·h-1 and determined runoff and leachate volumes. Runoff percentage [runoff × 100%/(runoff + leachate)] increased at the 11% slope for each underlay treatment. Mean (n = 10) runoff percentages (RP) for the 1.5% and 11% slopes were 0.5% and 15.7%, respectively, for no underlay, 0.1% and 1.1% for coarse sand, 0.1% and 0.7% for CS50, 0.7% and 2.5% for gravel, and 0.1% and 3.1% for native sandy soil. The low RP observed indicate that a high percentage of nutrients and agrichemicals associated with container leachate would move into the underlying substrate or soil rather than directly running off into surface waters.

Full access

growth index, overall appearance, leachate EC, and pH among potting mix treatments. Overall appearance rankings at all time points were combined and analyzed using a one-way ANOVA, with differences among means determined according to Tukey’s multiple

Open Access

Irrigation of sand-based golf greens with ozonated water may affect grass growth and chemical processes in the root zone. The objective of this study was to evaluate the effects of ozonated and aerated water on bentgrass growth and root zone chemistry in sand-based greens over a 12-month period. Creeping bentgrass (Agrostis stolonifera) cores [10 cm diameter × 12 cm depth (3.9 × 4.7 inches)] were collected from a sand-based bentgrass nursery and placed in columns designed to collect leachate water. Cores were placed in a greenhouse and irrigated with 1) municipal tap water [6 to 8 mg·L-1 (ppm) dissolved oxygen (DO)], 2) aerated tap water (12 mg·L-1 DO), or 3) ozonated tap water (aerated plus 0.8 mg·L-1 ozone). Leachate was periodically collected and analyzed for pH, electrolytic conductivity (EC), and nutrients. Grass clippings were weighed and analyzed for total nitrogen (N) and phosphorus (P). Roots were periodically collected from selected cores to determine root distribution. At 40 and 90 days after initiating water treatments, bentgrass irrigated with ozonated water had a higher chlorophyll index than bentgrass irrigated with tap water. After 128 and 157 days, bentgrass clipping weights were significantly greater for the cores irrigated with ozonated water and, to a lesser extent, aerated water. At 61 and 149 days, nitrate (NO3-N) and EC levels were elevated in leachate from aerated and ozonated samples, suggesting increased mineralization of organic matter in those bentgrass cores. Ozonated water increased bentgrass crown weights, but had no effect on root mass. Ozonated water did not affect bentgrass tissue N and P concentrations. Statistically significant effects from ozonated water occurred within the first few months, but sustained benefits were negligible.

Full access

Two experiments were conducted to compare the growth of `Ultra White' petunia (Petunia ×hybrida) plants in a subirrigation system versus in a hand-watered system. In Expt. 1, petunia plants were watered with 50, 100, or 150 ppm (mg·L-1) of N of Peter's 20-10-20 (20N-4.4P-16.6K) and in Expt. 2, Nutricote 13-13-13 (13N-5.8P-10.8K) type 100, a controlled release fertilizer, was incorporated into the growing substrate, prior to transplanting, at rates of 3, 6, or 9 lb/yard3 (1.8, 3.6, or 4.5 kg·m-3). In both experiments, there was no difference in petunia shoot dry mass or final flower number between the irrigation systems at the lowest fertilization rate but differences were evident at the higher fertilization rates. In Expt. 1, shoot dry mass and flower number of subirrigated petunia plants fertilized with 100 ppm of N was greater than for hand-watered plants fertilized at the same rate. However, subirrigated petunia plants fertilized with 150 ppm of N were smaller with fewer flowers than hand-watered petunia plants fertilized with 150 ppm of N. Substrate electrical conductivity (EC) concentrations for petunia plants subirrigated with 150 ppm of N were 4.9 times greater than concentrations in pots hand-watered with 150 ppm of N. In Expt. 2, subirrigated petunia plants fertilized with 6 and 9 lb/yard3 were larger with more flowers than hand-watered plants fertilized at the same rates. Although substrate EC concentrations were greater in subirrigated substrates than in hand-watered substrates, substrate EC concentrations of all hand-watered plants were about 0.35 dS·m-1. Subirrigation benches similar to those used in these experiments, appear to be a viable method for growing `Ultra White' petunia plants. However, the use of Peter's 20-10-20 at concentrations greater than 100 ppm of N with subirrigation appeared to be detrimental to petunia growth probably because of high EC concentrations in the substrate. On the other hand, the use of subirrigation with Nutricote 13-13-13 type 100 incorporated at all of the rates tested did not appear to be detrimental to petunia growth.

Full access