Search Results

You are looking at 1 - 10 of 133 items for :

  • HortTechnology x
Clear All
Author:

The search for appropriate white pine blister rust (WPBR) (Cronartium ribicola J.C. Fischer) resistant germplasm to use in black currant (Ribes nigrum L.) breeding programs began in 1935 in Ottawa. Crosses were made in 1938 and 1939 with three different Ribes L. species and two standard black currant cultivars. The resulting seedlings from these crosses were evaluated for rust resistance. Three promising selections resulted from this program and were named `Coronet', `Crusader' and `Consort'.

Free access

Frequency of infection, main effects and interactions among four geographic sources of white pine blister rust (WPBR) (Cronartium ribicola J.C. Fisch.) and 10 Ribes-sites (Ribes L. specie × site combinations) was investigated using leaf disk assay. Two clones, one of R. hudsonianum (Dougl.) Jancz. and one of R. viscosissimum Prush., were not infected by any sources of WPBR. One clone of R. viscosissimum that was not infected by two sources of WPBR was susceptible to the other sources. Highly significant WPBR sourc × Ribes-site analysis of variance interaction for incubation period and infection efficiency precluded testing main effects. Profile plots of incubation period interaction means showed orderly interaction by all WPBR sources and plots of infection efficiency showed that aggressively virulent WPBR from Oregon (Champion Mine) ranked near or at the bottom for infection efficiency for all Ribes-sites. Meanwhile, aggressively virulent WPBR from Idaho (Merry Creek) ranked near the bottom for infection efficiency when inoculated onto Ribes obtained from the Cascade Mountains but switched to the highest ranking when inoculated onto Ribes obtained from Idaho. Geographic interaction of white pine blister rust and Ribes for incubation period and infection efficiency may help to explain geographic patterns recently observed in WPBR molecular markers.

Free access
Author:

The center of diversity for white pine blister rust (WPBR) (Cronartium ribicola J.C. Fischer) most likely stretches from central Siberia east of the Ural Mountains to Asia, possibly bounded by the Himalayas to the south. The alternate hosts for WPBR, Asian five-needled pines (Pinus L.) and Ribes L. native to that region have developed WPBR resistance. Because the dispersal of C. ribicola to Europe and North America occurred within the last several hundred years, the North American five-needled white pines, Pinus subsections, Strobus and Parya, had no previous selection pressure to develop resistance. Establishment of WPBR in North American resulted when plants were transported both ways across the Atlantic Ocean. In 1705, Lord Weymouth had white pine (P. strobis L.), also called weymouth pine in Europe, seed and seedlings brought to England. These trees were planted throughout eastern Europe. In the mid-1800s, WPBR outbreaks were reported in Ribes and then in white pines in eastern Europe. The pathogen may have been brought to Europe on an infected pine from Russia. In the late 1800s American nurserymen, unaware of the European rust incidence, imported many infected white pine seedlings from France and Germany for reforestation efforts. By 1914, rust-infected white pine nursery stock was imported into Connecticut, Indiana, Massachusetts, Minnesota, New Hampshire, Ohio, Pennsylvania, Vermont, and Wisconsin, and in the Canadian provinces of Ontario, Quebec, and British Columbia. The range of WPBR is established in eastern North America and the Pacific Northwest. New infection sites in Nevada, South Dakota, New Mexico and Colorado have been observed during the 1990s.

Free access
Author:

Temperature management has emerged as an important tool for plant height control in greenhouse production systems. This is particularly important in vegetable transplant production where chemical controls for plant height are limited or not legal. Plant height is a function of the number of nodes and the length of each internode, and both are strongly influenced by greenhouse temperatures. Node number, or formation rate, is primarily a function of the average greenhouse temperature, increasing as the average temperature increases. Internode length is strongly influenced by the relationship between the day and night temperature, commonly referred to as DIF (day temperature - night temperature). As DIF increases, so does internode length in most plant species studied. Although the nature and magnitude of temperature effects vary with species, cultivar, and environmental conditions, these two basic responses can be used to modify transplant growth. Although data are limited, controlling transplant height with temperature does not appear to adversely influence plant establishment or subsequent yield.

Full access

al., 2015 ; Morel et al., 2009 ; Wu et al., 2019 ). Little is known about which traits are critical to the selection of specific bush shapes. The focus of the TAMU Rose Breeding and Genetics program is the development of garden roses for the modern

Open Access

, 2002, and 2006; error bars = ±1 se . Results of this evaluation identified several muscadine grape cultivars with performance and quality attributes useful in further breeding and genetics research for the development of new muscadine germplasm and

Full access

The primary objectives of these laboratory exercises are to familiarize advanced undergraduate and graduate students (and instructors) with the general concepts, techniques, and uses of DNA fingerprinting and to remove some of the perceived mystique underlying molecular genetics. The technique of DNA amplification fingerprinting (DAF) is partitioned into four independent laboratory exercises that include DNA isolation, DNA amplification, gel electrophoresis and silver staining, and data collection and analysis. Although the DNA amplification and gel electrophoresis exercises are emphasized, very detailed and easy-to-follow instructions and protocols are provided for all aspects of the DNA fingerprinting process. These exercises, or similar ones, have been successfully completed on the first attempt by several classes of novice graduate students and other researchers.

Full access

Eighteen cultivars of hosta (Hosta spp.), selected to represent a wide range of size, leaf shape and color, and genetics, were evaluated for reaction to Sclerotium rolfsii var. delphinii in a greenhouse in Ames, Iowa in 2000 and 2001. Bare-root, single-eye plants were planted in 15.2-cm (6-inch) pots in a soil-containing (2000) and soilless (2001) mix and grown in a greenhouse for 3 months. Plants were then inoculated by placing a carrot disk infested with mycelium of S. rolfsii at the base of the plant. Disease severity was assessed weekly for 6 weeks as percent symptomatic petioles. Disease development varied significantly (P < 0.05) among cultivars. Overall, `Lemon Lime', `Munchkin', `Nakaiana', `Platinum Tiara', and `Tardiflora' had the most severe symptoms and `Halcyon' showed the least disease.

Full access

Traditional genetic manipulation methods have proven ineffective or irrelevant for many citrus breeding objectives. Alternative approaches to Citrus genetic improvement are now available as a result of technological developments in genetics and tissue culture. For example, mapping DNA marker polymorphisms should lead to identifying markers closely linked to important loci, thereby facilitating early selection and minimizing costs associated with plant size and juvenility. Genetic transformation methods allow trait-specific modification of commercial cultivars. By selecting beneficial variants from sectored fruit chimeras and the recovering plants via somatic embryogenesis, the problems of nucellar embryony and the hybrid nature of commercial cultivar groups can be avoided. Induced mutagenesis from mature vegetative buds may overcome these problems, as well as juvenility. Ploidy level manipulation in vitro can increase the number and diversity of tetraploid breeding parents, leading to the development of seedless Citrus triploids and mitigating sterility, incompatibility, and nucellar embryony.

Full access

Graduate student enrollment in the plant sciences has decreased over the past several years, and there is increasing interest in recruitment/retention strategies. Before successful strategies can be implemented, however, the status of current plant science graduate programs needs to be determined. Survey data on graduate student demographics, research area, support levels, current recruitment strategies, and career opportunities were collected from 23 plant science graduate programs. Overall, 55% of graduate students in plant sciences were male and 45% were female; approximately 60% were domestic and 40% were international. Cellular/molecular biology and breeding/genetics were the two disciplines that had the greatest number of graduate students and the greatest number of job opportunities. Although most programs cited financial support as the biggest obstacle to recruitment, there was not a strong correlation between graduate student number/program and stipend amount. However, other funding factors besides stipend amount; such as stipend number, the guarantee of multiple years of support, the funding of tuition waivers, and health insurance costs, likely impact student number. As more of these costs are shifted to faculty, there appears to be an increasing inability and/or reluctance to invest grant funds (which support 60% of the plant science graduate students) in graduate student education. These data suggest that the decline in plant science graduate student enrollment may not be directly due to low stipend amounts, but rather to shifting of more of the total cost of graduate training to faculty, who may be unable/unwilling to bear the cost. There is also a clear shift in the research focus of plant science graduate students, as postdoctoral and career opportunities are weighted towards molecular biology/genetics, leaving the more applied plant science areas particularly vulnerable to low graduate enrollment.

Full access