Search Results

You are looking at 1 - 10 of 184 items for :

  • cold storage x
  • Journal of the American Society for Horticultural Science x
Clear All

`Fino de Jete' cherimoya fruit were stored at 20, 10, 8, or 6C, 80% relative humidity. Two rises of CO2 production and an ethylene rise following the first peak of respiration were obtained in fruit held at 20C. The ripe stage coincided with the onset of the second respiratory rise. Soluble sugar and organic acid concentration were maximal, and flesh firmness was 18 N in ripe fruit. Lower temperature reduced respiration rate and ethylene production; however, some stimulation of ethylene synthesis was observed at 10C. Cherimoyas ripened to edible condition during 6 days at 10C, but fruit maintained at 8C for up to 12 days required transfer to 20C to ripen properly. Our results suggest that high increases in CO2 are not sufficient to complete cherimoya fruit ripening without the concurrent rise in ethylene production. Citric acid accumulation, inhibition of ethylene synthesis, and reduced accumulation of sucrose were observed during storage at 6C. Removal to 20C after 12 days at 6C resulted in no ripening, almost complete inhibition of ethylene synthesis, and severe skin browning. Thus, 8C is the lowest tolerable temperature for prolonged cold storage of cherimoya `Fino de Jete'. Fruit can be held at 8C for up to 12 days without damage from chilling injury.

Free access

Abstract

Exposing ‘Spartan’ or ‘Golden Delicious’ apples (Malus domestica Borkh.) to 38°C for 4 to 6 days immediately after harvest suppressed softening during subsequent storage at −1°C 90 to 94% relative humidity. The rate of acid loss during the period of heating was rapid, but returned to normal during cold storage. Breakdown, core browning, and decay of ‘Spartan’ apple were almost eliminated by the heat treatment. There were no physiological disorders in the ‘Golden Delicious’.

Open Access

Cold-hardiness evaluations and soluble and insoluble-nonstructural carbohydrate analysis of dormant Vitis vinifera L. cv. Cabernet Sauvignon buds and cane tissue indicate a positive relationship between soluble carbohydrates and primary bud cold hardiness. Seasonal variations in soluble and insoluble carbohydrates appear to be related to changes in air temperatures and the dormancy status of the tissues. No differences were found in bud cold hardiness and only limited differences in carbohydrate levels of buds or stem tissues collected over 3 years from early harvest, normal harvest, or unharvested vines. These findings contrast with the widely held opinion that delayed harvest or failure to remove fruit results in reduced cold hardiness as a consequence of low storage carbohydrate content of the plants.

Free access

`Elegant Lady', `O'Henry' and `September Sun' peaches [(Prunus persica (L.) Batsch (Peach Group)] and `Summer Bright' and `Summer Grand' nectarines [(Prunus persica (L.) Batsch f. nucipersica (Nectarine Group)] heated to a seed surface temperature of 47.2 °C over a period of 4 hours developed mealy flesh sooner and to a much greater extent than nonheated fruit following cold storage at 5 °C for 1 to 3 weeks. Exo- and endopolygalacturonase activities were reduced following 3 to 4 hours of heating and may have been responsible for the increased mealiness. Mealiness often developed in defined regions rather than throughout the entire fruit. Comparison of juicy and mealy regions within individual fruit revealed that mealy regions contained 65% and 86% less exo- and endopolygalacturonase activity, respectively, than juicy regions, whereas pectinmethylesterase activity was unchanged. Extractable protein was reduced by >50% in the mealy regions of the fruit. Intermittent warming periods of 24 hours at 20 °C at weekly intervals during storage at 5 °C were less effective in reducing mealiness in heat-treated than in control fruit. It is important that future work with heat treatments and stone fruit closely monitor potential effects on this disorder to avoid loss of market quality following treatment.

Free access

The interactions of ancymidol drenches, postgreenhouse cold storage, and hormone sprays on postharvest leaf chlorosis and flower longevity of `Nellie White' Easter lilies (Lilium longiflorum Thunb.) were investigated. Ancymidol drenches (0.5 mg/plant twice) during early growth resulted in leaf chlorosis in the greenhouse which intensified further during postharvest. Cold storage (4 °C) of puffy bud stage plants for 2 weeks also accelerated leaf chlorosis. The combination of ancymidol treatment with cold storage resulted in the most severe leaf chlorosis. Promalin (GA4+7 and BA each at 100 mg·L-1) sprays completely prevented postharvest leaf chlorosis, whereas ProGibb (GA3 at 1000 mg·L-1) was ineffective. Cold storage reduced flower longevity and increased bud abortion, however, the degree of bud abortion varied among experiments in different years. Both ProGibb and Promalin sprays increased flower longevity. Compared to positive DIF (difference between day and night temperature) grown plants, forcing under negative DIF (-8 °C) increased the severity of postharvest leaf chlorosis. Leaves were sampled from basal, middle, and upper sections of the stem after 4 and 12 days in a postharvest evaluation room, and analyzed for soluble carbohydrates and N. Total leaf soluble carbohydrates and N concentrations were less in basal and middle sections of negative DIF-grown plants than in positive DIF-grown plants. Leaf chlorosis was associated with depletion of soluble carbohydrates and N in the leaves. Chemical names used: α-cyclopropyl-α-(p-methoxyphenyl)-5-pyrimidinemethanol (ancymidol); gibberellic acid (GA3); gibberellins A4A7 (GA4+7); N-(phenylmethyl)-1H-purine 6-amine (benzyladenine).

Free access

Lilium longiflorum Thunb. `Ace' bulblets generated in vitro at 25 or 30C were stored at 4C for O, 1, 2, 4, or 6 weeks after removal from culture and before planting to ascertain the effects of in vitro generation temperature and post-in vitro cold storage duration on bulblet growth responses during 36 weeks of greenhouse growth. Increasing post-in vitro storage duration decreased the number of days to first leaf emergence and percentage of plants producing shoots within 36 weeks, but increased the number of days to shoot emergence and anthesis, leaf number, and flower bud number. The length of time required for bulblet development from planting to shoot emergence was affected by storage duration more than periods from shoot emergence to visible bud and anthesis. It is feasible to produce high-quality L. longiflorum pot plants from in vitro-produced bulblets.

Free access
Authors: and

Abstract

Continuous ethylene treatment (100 ppm) of avocado fruit stored at 6°C, for 13 days, caused acceleration in respiration rate for the duration of the treatment. At the end of the low temperature treatment and, also, after transfer of the fruit to 20°C, polygalacturonase activity and softening of the fruit were enhanced by ethylene treatment in comparisons with non-treated fruit. Endogenous ethylene production of ethylene-treated fruit was suppressed markedly after transfer to 20°C. Fruit treated 24 hours with ethylene at 6°C at the beginning of the storage period, ripened similarly to untreated control fruits.

For avocado we suggest that in cold storage (6°C) the presence of ethylene should be avoided so that the shelf-life period of the fruit will not be reduced.

Open Access

Abstract

High performance liquid chromatography of mature ‘Beurre d'Anjou’ and ‘Beurre Bosc’ pear (Pyrus communis L.) fruit flesh showed that the major phenolics at harvest were chlorogenic acid, catechin, and arbutin. Neither cultivar contained epicatechin nor p-coumaroyl quinate. During 160 days at –1°C the chlorogenic acid content of d'Anjou increased significantly. In ‘Bosc’, chlorogenic acid levels decreased during storage. Catechin content increased linearly while arbutin levels remained nearly constant in both cultivars. Coincident with the completion of the cold requirement for initiation of ripening and endogenous ethylene production, i.e., 20 days for ‘Bosc’ and 50 days for ‘d'Anjou’, there was an appearance of low levels of a p-coumaric acid derivative and trace amounts of epicatechin/p-coumaroyl quinate. At 120 days epicatechin/p-coumaroyl quinate increased in ‘d'Anjou’ but not in ‘Bosc’. There is a coincidence, and perhaps relationship, between ethylene production and the quantity as well as the composition of phenolics present during storage. Bruising pear fruit after 120 days of storage caused a 30% increase in chlorogenic acid and a 50% increase in catechin, but no increase in p-coumaric acid derivatives.

Open Access

Seasonal changes in cold tolerance and proteins were studied in the leaves of sibling deciduous and evergreen peach [Prunus persica (L.) Batsch]. Freezing tolerance [defined as the subzero temperature at which 50% injury occurred (LT50)] was assessed using electrolyte leakage. Proteins were separated by sodium dodecyl sulfate polyacrylamide-gel electrophoresis. Electroblots were probed with anti-dehydrin and anti-19-kD peach bark storage protein (BSP) antibodies. Leaf LT50 decreased successively from -5.8 °C on 18 Aug. to -10.3 °C in the evergreen genotype and from -7.0 °C to -15.0 °C in the deciduous genotype by 14 Oct. Protein profiles and immunoblots indicated the accumulation of a 60- and 30-kD protein during cold acclimation in the leaves of deciduous trees; however, levels of these proteins did not change significantly in the evergreen trees. Immunoblots indicate that the 60-kD protein is a dehydrin-like protein. Gel-electrophoresis and immunoblots also indicated that the 19-kD BSP progressively disappeared from summer through fall in leaves of deciduous peach but accumulated to a high level in bark tissues. A similar inverse relationship was not evident in evergreen peach.

Free access

Abstract

Control of woolly breakdown in ‘Elberta’ peaches was obtained by removal of the fruit to ambient room temperature (23–25°C) for 48 hours after 2 and 4 weeks' storage at 0°C. A 6 weeks' storage life was thus obtained. Warming the fruit after cold storage intervals shorter than 2 weeks was less effective after longer storage periods; the disorder was often enhanced by removal to room temperature.

A hypothesis to explain the development of woolly breakdown on the basis of these and previous data is discussed. It is suggested that further prolongation of storage could be obtained by repeated exposures to room temperature.

Open Access