Search Results

You are looking at 1 - 10 of 19 items for :

  • Zoysia japonica x
  • Journal of the American Society for Horticultural Science x
Clear All

In the United States, zoysiagrass refers to two perennial species from the genus Zoysia ( Z. japonica and Z. matrella ) that are used as a warm-season turfgrass for lawns, parks, and golfing surfaces (tees, fairways, roughs, bunker faces) in the

Free access

Root hairs contributed variously to total root length, ranging from a low of 1% for `Emerald' zoysiagrass (Zoysia japonica Steud. x Z. tenuifolia Willd. ex Trin) and 5% for `Georgia Common' centipedegrass [Eremochloa ophiuroides (Munro.) Hack], to a high of 95% and 89% for `Texturf 10' and `FB 119' bermudagrasses [Cynodon dactylon (L.) Pers.], respectively. Genotypes ranking highest for root lengths with root hairs also ranked highest for root lengths without root hairs and for number of main roots per plant. In terms of root lengths with root hairs, first-order lateral roots contributed more to total root length than root lengths of either main roots or second-order lateral roots for all nine genotypes. Number and length of root hairs arising from either main or lateral roots were not significantly affected by their relative distance from the cap of the main root. `Texturf 10' and `FB 119' bermudagrasses ranked highest for root and root-hair extent.

Free access

Physiological responses to salinity and relative salt tolerance of six C4 turfgrasses were investigated. Grasses were grown in solution culture containing 1, 100, 200, 300, and 400 mm NaCl. Salinity tolerance was assessed according to reduction in relative shoot growth and turf quality with increased salinity. Manilagrass cv. Matrella (FC13521) (Zoysia matrella (L.) Merr.), seashore paspalum (Hawaii selection) (Paspalum vaginatum Swartz), and St. Augustinegrass (Hawaii selection) (Stenotaphrum secundatum Walt.) were tolerant, shoot growth being reduced 50% at ≈400 mm salinity. Bermudagrass cv. Tifway (Cynodon dactylon × C. transvaalensis Burtt-Davey) was intermediate in tolerance, shoot growth being reduced 50% at ≈270 mm salinity. Japanese lawngrass cv. Korean common (Zoysia japonica Steud) was salt-sensitive, while centipedegrass (common) (Eremochloa ophiuroides (Munro) Hack.) was very salt-sensitive, with total shoot mortality occurring at ≈230 and 170 mm salinity, respectively. Salinity tolerance was associated with exclusion of Na+ and Cl- from shoots, a process aided by leaf salt glands in manilagrass and bermudagrass. Shoot Na+ and Cl- levels were high at low (100 to 200 mm) salinity in centipedegrass and Japanese lawngrass resulting in leaf burn and shoot die-back. Levels of glycinebetaine and proline, proposed cytoplasmic compatible solutes, increased with increased salinity in the shoots of all grasses except centipedegrass, with tissue water levels reaching 107 and 96 mm at 400 mm salinity in bermudagrass and manilagrass, respectively. Glycinebetaine and proline may make a significant contribution to cytoplasmic osmotic adjustment under salinity in all grasses except centipedegrass.

Free access

Rhizomes of `Meyer' zoysiagrass (Zoysia japonica Steud.) were subjected to temperatures below 0 °C and were subsequently placed in a growth chamber with air at 34 °C day/28 °C night to determine the rate of shoot growth from nodes. Rhizomes exposed to subzero temperatures produced shoots steadily up to 16 days after freezing (DAF), but subsequent shoot growth from rhizomes was minimal. At 32 DAF, shoots were present on 68% and 44% of the nodes of unfrozen control (2 °C) rhizomes and those frozen to -7 °C, respectively. In another study, samples were frozen to a sublethal temperature (-7 °C) to examine the distribution of extracellular ice voids near the apical meristems of rhizomes and to characterize tissue recovery. Extracellular voids were present within the leaf tissue and between the leaves in samples prepared for scanning electron microscopy (SEM) immediately after freezing to -7 °C. By 12 DAF, most of the remaining voids were observed in older leaves. Nearly all extracellular voids in the leaves were absent by 20 DAF. However, by 28 DAF, some rhizomes still had small voids between leaves. Although the structure of zoysiagrass rhizomes subjected to -7 °C was temporarily disrupted, tissues recovered from extracellular freezing and new shoot growth was produced following exposure to warm temperatures.

Free access
Authors: and

Greenhouse studies were conducted on three warm-season turfgrasses, `Midlawn' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy], `Prairie' buffalograss [Buchloe dactyloides (Nutt.) Engelm.], and `Meyer' zoysiagrass (Zoysia japonica Steud.), and a cool-season turfgrass, `Mustang' tall fescue (Festuca arundinacea Schreb.) to determine 1) water relations and drought tolerance characteristics by subjecting container-grown grasses to drought and 2) potential relationships between osmotic adjustment (OA) and turf recovery after severe drought. Tall fescue was clipped at 6.3 cm once weekly, whereas warm-season grasses were clipped at 4.5 cm twice weekly. The threshold volumetric soil water content (SWC) at which a sharp decline in leaf water potential (ψL) occurred was higher for tall fescue than for warm-season grasses. Buffalograss exhibited the lowest and tall fescue exhibited the highest reduction in leaf pressure potential (ψP) per unit decline in ψL during dry down. Ranking of grasses for magnitude of OA was buffalograss (0.84 MPa) = zoysiagrass (0.77 MPa) > bermudagrass (0.60 MPa) > tall fescue (0.34 MPa). Grass coverage 2 weeks after irrigation was resumed was correlated positively with magnitude of OA (r = 0.66, P < 0.05).

Free access

this study. Although these species are widely distributed in Japan, the photosynthetic pathway of the two Sedum species is not well understood. Zoysia matrella , a warm-season turfgrass and C 4 plant, is one of the most common green roof plants in

Free access

2,4-D with a lower concentration of cytokinins in the callus induction medium resulted in the formation of very compact embryogenic callus structure in zoysiagrass [ Zoysia japonica ( Chai et al., 2011 )]. However, in our study, the embryogenic

Free access

detected under cold stress conditions, similar to what has been described in zoysiagrass ( Zoysia japonica ) stolons exposed to cold stress, and Xuan et al. (2013) confirmed that functionally different APX proteins differentially respond to cold stress

Free access

., 2002 ). Zhang et al. (2009) similarly reported greater PC and PE in freezing-tolerant ‘Meyer’ zoysiagrass ( Zoysia japonica ) as compared with ‘Cavalier’ ( Zoysia sp.). These results provide evidence that cold acclimation processes are occurring with

Open Access

metabolic activities vary highly among turfgrass species, cultivar, or accessions within a species as well as salinity concentration. Seashore paspalum had superior shoot dry weight under salinity stress compared with zoysiagrass ( Zoysia japonica ), manila

Free access