Search Results

You are looking at 1 - 8 of 8 items for :

  • Cercis canadensis x
  • Journal of the American Society for Horticultural Science x
Clear All

Cercis canadensis , a leguminous tree, is native to North America and cultivated widely as an ornamental. Flowers emerge directly from the stem or trunk before the leaves early in the spring. Petal colors range from purple to pink to red or white. A

Free access

Seed dormancy in Eastern redbud (Cercis canadensis var. canadensis L.) can be overcome by seedcoat scarification to allow water imbibition, followed by chilling stratification to permit germination. During chilling stratification, there was an increase in the growth potential of the embryo as indicated by the ability of the isolated embryo to germinate in osmotic solutions. Penetration resistance of the testa also decreased after chilling stratification. The combination of seedcoat alteration and the increase in embryonic growth potential was associated with overcoming dormancy in redbud seed. GA3 or ethephon (50 μm) stimulated germination (28% and 60%, respectively) and increased the growth potential of treated embryos. Chemical names used: gibberellic acid (GA3), (2-chloroethyl) phosphoric acid (ethephon).

Free access

Abstract

An examination of dormancy in seeds of Eastern Redbud, Cercis canadensis L., showed that dormancy is controlled by permeability of the testa. Scarification by H2SO4 or mechanical abrasion permitted rapid and complete germination of dormant seed. Stratification was necessary only if seed were not scarified. Nonscarified seeds showed almost no water uptake during 55 days at 5°C, while scarified seeds had a steep imbibitional gradient. Germination was not stimulated by adding oxygen. No growth inhibitors were detected in dormant seed, and no promoters were found in chilled seeds.

Open Access

The seedcoat anatomy in the hilar region was examined in dry, imbibed and germinating seeds of Eastern redbud (Cercis canadensis L.). A discontinuous area was observed between macrosclereid cells in the palisade layer of the seedcoat which formed a hilar slit. A cap was formed during germination as the seedcoat separated along the hilar slit and was hinged by the macrosclereids in the area of the seedcoat opposite to the hilar slit. The discontinuity observed in the palisade layer was the remnant of the area traversed by the vascular trace between the funiculus and the seedcoat of the developing ovule. There were no apparent anatomical differences in the hilar region of the seedcoat between dormant and nondormant imbibed seeds. However, the thickened mesophyll of the seedcoat in this region and the capacity of the endosperm to stretch along with the elongating radicle may contribute to maintaining dormancy in redbud seeds.

Free access

Net photosynthesis (Pn) of two ecotypes of redbud (Cercis canadensis L.) was studied following growth under high temperatures and increasing drought. Although mexican redbud [C. canadensis var. mexicana (Rose) M. Hopkins] exhibited greater Pn than eastern redbud (C. canadensis var. canadensis L.), Pn decreased at a similar rate under water deficit stress for both ecotypes. Mexican redbud also had greater instantaneous water use efficiency [net photosynthesis: transpiration (WUE)] than eastern redbud. Differences in both Pn and WUE might have been due to differences in leaf thickness. The optimum temperature for potential photosynthetic capacity (37 °C) was unaffected by irrigation or ecotype. Tissue osmotic potential at full turgor was more negative in eastern redbud, but was unaffected by drought stress in either ecotype. Soluble carbohydrate content was higher in eastern redbud, and in both ecotypes, d-pinitol was the major soluble carbohydrate and was considerably more abundant in the water-stressed plants. Total polyol content (myo-inositol + ononitol + pinitol) was also greater in the water-stressed plants. Both ecotypes were very tolerant of high temperatures and drought.

Free access

The objective of this study was to compare the structure and efficacy in terms of retarding cuticular transpiration of leaf cuticles from eastern redbud (Cercis canadensis L.) and dull-leaf and glossy-leaf Mexican redbud [Cercis canadensis var. mexicana (Rose) M. Hopk.]. Leaves of Mexican redbud exhibited several xeromorphic characteristics compared to eastern redbud: a smaller, thicker leaf with thicker cuticles, more cuticular wax, a higher specific leaf mass, and greater hydrated water content on a leaf area basis. Mexican redbuds with a glossy leaf differed from those with a dull leaf only in a thicker adaxial cuticle lacking wax crystallite on the surface. Epicuticular wax crystallite were present on the abaxial surface of all leaves examined. Detached leaves of eastern redbud had a higher water loss rate than those of Mexican redbud only on a dry mass basis, not on a leaf area basis. There was no difference in the rate of water loss by detached leaves of glossy-leaf and dull-leaf Mexican redbuds after 4 hours.

Free access

CO 2 e to the GWP for Acer rubrum (red maple) ( Ingram, 2012 ), Picea pungens (blue spruce) ( Ingram, 2013 ), and Cercis canadensis (redbud) ( Ingram and Hall, 2013 ), respectively, from propagation to the nursery gate. Accounting for carbon

Free access

Abstract

Seed germination was 90–95% for Kentucky coffeetree [Gymnocladus dioicus (L.) C. Koch] after concentrated sulfuric acid treatment for 120 to 150 minutes; 97–98% for honeylocust (Gleditsia triacanthos va. inermis L.) following 60, 90, or 120 minutes concentrated sulfuric acid scarification; and was 67–72% for redbud (Cercis canadensis L.) after 30, 60, or 90 minutes of concentrated sulfuric acid scarification followed by a 60-day stratification period. Scanning electron micrographs of acid-scarified Kentucky coffeetree, honeylocust, and redbud seed indicated that lumens of the macrosclereid cells on the seed surface were exposed after acid treatment, permitting imbibition of water. Boiling water treatment ruptured the macrosclerid layer, while seed treated with liquid N2 had fissures that did not appear to penetrate the macrosclereid layer.

Open Access