Search Results

You are looking at 1 - 10 of 480 items for :

  • "water loss" x
  • HortScience x
Clear All

flowers, including carnations, are the result of stomatal water loss that gradually exceeds the rate of water uptake through the xylem vessels in the cut-stem ends ( Mattos et al., 2017 ; van Doorn, 2012 ). The stomata of higher plants occur mainly on the

Open Access

Termination of vase life for cut flowers is characterized by wilting associated with an imbalance developing between water uptake through xylem conduits in stems and water loss through stomata and other structures on leaves and other organs. To

Free access

Transpiration rates of chrysanthemum [Dendranthema ×grandiflorum (Ramat.) Kitamura] plants grown under spectral filters were evaluated as part of an investigation on using light quality to regulate plant growth. The 6% CuSO4·5H2O spectral filter reduced photosynthetic photon flux density in red (R) and far red (FR) wavelengths and increased the R: FR and blue (B): R ratios (B = 400 to 500 nm; R = 600 to 700 nm; FR = 700 to 800 nm) of transmitted light relative to the water (control) filter. After 28 days, cumulative water use of plants grown under CuSO4 filters was ≈37% less than that of control plants. Transpiration rates were similar among plants grown under CuSO4 and control filters when expressed as leaf area, a result suggesting that the reduced cumulative water loss was a result of smaller plant size. Plants grown under CuSO4 filters had slightly lower (10%) stomatal density than control plants. Light transmitted through CuSO4 filters did not alter the size of individual stomata; however, total number of stomata and total stomatal pore area per plant was ≈50% less in plants grown under CuSO4 filters than in those grown under control filters due to less leaf area. The results suggest that altering light quality may help reduce water use and fertilizer demands while controlling growth during greenhouse production.

Free access
Authors: and

Abstract

Abscisic acid (ABA) concn as low as 1 ppm, when added to the vase water, effective by reduced water loss of cut roses.

Open Access

Abstract

Freeze-damaged ‘Marsh’ grapefruit (Citrus paradisi Macf.) and ‘Pineapple’ orange [Citrus sinensis (L.) Osbeck] fruit were sealed in polyethylene shrink film and stored for 6 weeks at 15°C in an attempt to prevent segment dehydration. Although the film greatly restricted water loss from the fruit, segment dehydration was similar to that observed for waxed fruit. During dehydration of freeze-damaged segments of ‘Valencia’ orange fruit, the relative water content of the adjacent mesocarp tissue increased. However, no differences were found in the soluble carbohydrate levels in mesocarp tissue adjacent to damaged and undamaged segments. The results indicate that the mesocarp tissue is not only in the pathway of water loss from free-damaged citrus fruit, but also accumulates water from damaged tissues. Furthermore, segment tissue membranes and walls appear to be differentially permeable to sugars and water.

Open Access

blueberries are 0 °C and RH >95% ( Forney 2009 ). Among the main pathways of water loss, both the stem scar and the cuticle have been proposed as the most relevant barriers influencing postharvest dehydration in blueberries ( Lara et al. 2014 ; Moggia and

Open Access

Previous work has shown that container grown landscape plants use, and likely need, much less water than is typically applied. Therefore, studies were conducted to quantify the relationships between water loss and water stress responses using several drought tolerant (Cassia corymbosa, Leucophyllum frutescens, Salvia greggii) and traditional landscape plants (Euonymus japonicus, Pyracantha coccinea). Water stress was induced by withholding water and water loss measured gravimetrically. The shape of the water loss curve was similar for all species being, Y = a + bx + cx2 (r2 > 0.95). The rate of ethylene production began to increase 24 hr after irrigation, reaching a maximum 36-48 hr after irrigation and then decreasing. Maximum ethylene production occured at 35-47% water loss irrespective of species or rate of water loss. Stress symptoms (wilting leaf discoloration and abscission) followed a similar pattern. The potential for monitoring gravimetric water loss to schedule container irrigation will be discussed.

Free access

Granier style thermal dissipation probes (TDP) have been used to estimate whole plant water loss on a variety of tree and vine species. However, studies using TDPs to investigate water loss of landscape tree species is rare. This research compared containerized tree water loss estimates of three landscape tree species using TDPs with containerized tree water loss estimates as measured by load cells. Over a three-year period, established, 5.0 cm caliper Bradford pear (Pyrus calleryana `Bradford'), English oak (Quercus robar), and sweetgum (Liquidambar styraciflua `Rotundiloba') trees in 75 L containers were placed on load cells, and water loss was measured for a 60-d period. One 3.0 cm TDP was placed into the north side of each trunk 30 cm above soil level. To reduce evaporation, container growing media was covered with plastic. Each night, plants were irrigated to soil field capacity and allowed to drain. To provide thermal insulation TDPs and tree trunks (up to 30 cm) were covered with aluminum foil coated bubble wrap. Hourly TDP water loss estimates for each species over a three-day period indicate TDP estimated water loss followed a similar trend as load cell estimated water loss. However, TDP estimates were generally less, especially during peak transpiration periods. In addition, mean, total daily water loss estimates for each species was less for TDP estimated water loss when compared to load cell estimated water loss. Although TDP estimated water loss has been verified for several plant species, these data suggest potential errors can arise when using TDPs to estimate water loss of select landscape tree species. Additional work is likely needed to confirm estimated sap flow using TDPs for many tree species.

Free access

Previous work has shown that container grown landscape plants use, and likely need, much less water than is typically applied. Therefore, studies were conducted to quantify the relationships between water loss and water stress responses using several drought tolerant (Cassia corymbosa, Leucophyllum frutescens, Salvia greggii) and traditional landscape plants (Euonymus japonicus, Pyracantha coccinea). Water stress was induced by withholding water and water loss measured gravimetrically. The shape of the water loss curve was similar for all species being, Y = a + bx + cx2 (r2 > 0.95). The rate of ethylene production began to increase 24 hr after irrigation, reaching a maximum 36-48 hr after irrigation and then decreasing. Maximum ethylene production occured at 35-47% water loss irrespective of species or rate of water loss. Stress symptoms (wilting leaf discoloration and abscission) followed a similar pattern. The potential for monitoring gravimetric water loss to schedule container irrigation will be discussed.

Free access

Nine pepper cultivars (Capsicum annuum L.) representing five pepper types were studied to determine water-loss rates, flaccidity, color, and disease development when stored at 8,14, or 20C for 14 days. Water-loss rate was markedly higher at 14C than at 8C, and was somewhat lower at 20C than at 14C. There were significant differences in water-loss rates between pepper cultivar with `NuMex R Naky', `NuMex Conquistador', and `New Mexico 6-4' (New Mexican-type peppers) having the highest water-loss rates. Flaccidity followed a pattern similar to water loss at each storage temperature, suggesting a direct relationship. Color development was cultivar- and package-dependent, and ratings increased with temperature. Placing pepper fruit in perforated polyethylene packages reduced water-loss rates 20 times or more, so that water loss no longer limited postharvest storage. Packaging also eliminated flaccidity and reduced color development across cultivars at 14 and 20C. Packaged fruit, however, developed diseases that limited postharvest longevity.

Free access