Search Results
Abstract
Through controlled ventilation, hot air was exhausted and ambient air was drawn in and evaporatively cooled during humidification. This process lowered the temperature to more acceptable levels and cuttings from 30 species of plants were propagated successfully. Ventilation reduced fungal growth and permitted the use of shading during exceptional warm conditions.
Abstract
The rate of leaf unfolding was determined for Easter lily (Lilium longiflorum Thunb.) ‘Nellie White’ grown at day and night temperatures ranging from 14° to 30°C. In this temperature range, rate of leaf unfolding was a linear function of average daily temperature; i.e., the effect on rate of leaf unfolding for day temperature was the same as for night temperature. The function determined was: leaves unfolded per day = −0.1052 + (0.0940 × average daily temperature). Isopleth plots were developed to describe day and night temperatures required for specific rates of leaf unfolding under 8-, 10-, and 12-hr day temperature periods.
Abstract
Time and temp requirements for floral induction in the Amazon lily were found to be 12 days at 29.4°C (85°F) or 3 weeks at 19.4°C (67°F). Greater numbers of bulbs flowered, however, when heated for 16 days at 29.4°C or 3 weeks at 20.6°C (69°F). No detrimental effects, as indicated by percent flowering and flowers per scape, were apparent when bulbs were heated for 4, 5, 6, 7, 8, or 9 weeks at 29.4°C. Total production time was increased as treatment period was extended, but appeared to be definitely modified by season. Days after heating to first flower progressively decreased and total flowers per scape increased as growing conditions improved in spring. The fall crop showed an opposite response.
Alternatives to ethoxyquin (Etq) are needed for controlling superficial scald of ‘Anjou’ european pears (Pyrus communis) during long-term storage. The current commercial standard storage conditions [Etq + −1 °C + controlled atmosphere (CA) with 1.5 kPa O2] reduced scald occurrence compared with control fruit (−1 °C + CA) during 6–8 months storage. At 1 °C in air, 1-methylcyclopropene (1-MCP) fumigation at 0.15 µL·L−1 at harvest was more efficient on reducing scald than Etq but did not prevent scald during 6–8 months storage. The 1-MCP-treated fruit at 1 °C in air developed their ripening capacity at 20 °C following 6–8 months storage but had deceased shipping ability (softening and yellowing of fruit). Although Etq inhibition of scald was associated with the inhibition of α-farnesene oxidation to conjugated trienols (CTols); 1-MCP reduced α-farnesene synthesis and thereby the availability of substrate to oxidize to CTols. CA storage at 1.5 kPa O2 totally prevented scald and retarded the loss of shipping ability without affecting the ripening capacity of 1-MCP-treated fruit at 1 °C through further decreases in the syntheses of ethylene, α-farnesene and CTols during 6–8 months storage. In addition, 1-MCP prevented a CA-induced disorder, pithy brown core (PBC), in ‘Anjou’ pears possibly through enhancing an oxidative/reductive metabolic balance during extended storage. In conclusion, the combinations of 1 °C + 1-MCP + CA is a potential commercial alternative to Etq for scald control while allowing the 1-MCP-treated ‘Anjou’ pears to recover ripening capacity during the shelf life period after 6–8 months storage.
Selected tomato (Lycopersicon esculentum Mill) genotypes were evaluated for their fruit-setting ability under high-temperature field conditions. A temperature-controlled greenhouse study was conducted to determine the percent fruit set from the total number of flowers and fruit produced per plant. Ratings for set obtained under high-temperature field conditions were significantly (P = 0.001) correlated with percent fruit set determined under similar greenhouse conditions. Most of the Asian Vegetable Research and Development Center (AVRDC) selections, Beaverlodge lines, `Nagcarlan', and `Red Cherry' could be considered heat-tolerant. Small-fruited, abundantly flowering genotypes were less affected by heat stress than larger-fruited cultivars. Prolonged periods of high temperature caused drastic reductions in pollen fertility in most genotypes, except `Red Cherry' and L. esculentum var. cerasiforme (PI 190256). Stigma browning and stigma exsertion commonly occurred on all lines, except AVRDC CL-5915-553 and PI 190256. Diallel analyses indicated that pollen fertility and fruit set under high field temperatures were primarily under additive gene control.
Chlorophyll fluorescence was measured under both laboratory and greenhouse conditions in an effort to develop a quick, reliable, and inexpensive laboratory procedure capable of predicting heat stress experienced by tomato (Lycopersicon esculentum Mill.) under greenhouse conditions. The laboratory tests consisted of measurements of the ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) performed on leaf discs taken from whole tomato leaves and placed on a temperature controlled plate. Comparisons were made with greenhouse measurements of the same parameter conducted on intact leaves of whole plants exposed to different temperature treatments imposed by manipulation of the aerial environment of the greenhouse. Dark adaption periods ranging from 15 min to all day in the greenhouse and temperature exposure periods ranging from 5 min to 60 min in the laboratory were compared to find the best correlation between the two tests. Best agreement was obtained with 60 min treatment times in the laboratory and 60 min dark adaption periods in the greenhouse. Fv/Fm decreased quadratically with increasing leaf temperature in a similar fashion in both tests, suggesting that the laboratory approach can adequately predict plant response to greenhouse heat stress.
The genetic basis for heat tolerance during reproductive development in snap bean was investigated in a heat-tolerant × heat-sensitive common bean cross. Parental, F1, F2, and backcross generations of a cross between the heat-tolerant snap bean breeding line `Cornell 503' and the heat-sensitive wax bean cultivar Majestic were grown in a high-temperature controlled environment (32 °C day/28 °C night), initiated prior to anthesis and continued through plant senescence. During flowering, individual plants of all generations were visually rated and scored for extent of abscission of reproductive organs. The distribution of abscission scores in segregating generations (F2 and backcrosses) indicated that a high rate of abscission in response to heat stress was controlled by a single recessive gene from `Majestic'. Abscission of reproductive organs is the primary determinant of yield under heat stress in many annual grain legumes; this is the first known report of single gene control of this reaction in common bean or similar legumes. Generation means analysis indicated that genetic variation among generations for pod number under heat stress was best explained by a six-parameter model that includes nonallelic interaction terms, perhaps the result of the hypothetical abscission gene interacting with other genes for pod number in the populations. A simple additive/dominance model accounted for genetic variance for seeds per pod. Dominance [h] and epistatic dominance × dominance [l] genetic parameters for yield components under high temperatures were the largest in magnitude. Results suggest `Cornell 503' can improve heat tolerance in sensitive cultivars, and heat tolerance in common bean may be influenced by major genes.
Cuttings of Dendranthema ×grandiflorum `Paragon' were used as a model system to assess the effects of root heating on disease severity. Roots were exposed to single episodes of heat stress, after which they were inoculated with zoospores of Phytophthora cryptogea Pethyb. & Laff. Root damage resulting from heat stress, or heat stress plus Phytophthora, was quantified 5 to 7 days after treatment. Roots of hydroponically grown plants, immersed for 30 min in aerated, temperature-controlled nutrient solutions, were severely damaged at 45C or above. Relatively little phytophthora root rot developed on inoculated plants exposed to 25 or 35C, but infection was severe in roots heated to 40C. Plants grown in potting mix were exposed to heat stress by plastic-wrapping the containers in which they were growing and placing them in heated water baths until roots achieved desired temperatures for 30 min. This system heated roots more slowly than in the hydroponic experiments, and 45 and 50C were less damaging. The amount of Phytophthora-induced root damage was insignificant in containerized plants heated to 25 or 35C, but was highly significant in those heated to 40C or higher. In field experiments, plants were positioned so their containers were either fulIy exposed to the late afternoon sun or heavily shaded to prevent sun exposure. The root zones of sun-exposed pots heated to 45 to 47C, while those of shaded pots never exceeded 34 to 36C. There was a large, highly significant increase in phytophthora root rot severity in the sun-exposed pots compared to shaded plants. These experiments showed that temperatures of 40C or higher, which commonly occur in container-grown plants exposed to solar radiation, can predispose chrysanthemum roots to severe Phytophthora infection.
The effects of temperature and sowing date on the time to first flowering were investigated in Petunia ×hybrida Vilm `Express Blush Pink' sown on three separate dates (8 Feb., 1 Mar. and 22 Mar. 1993) and grown in glasshouse compartments set to provide six air temperature regimes (minimum temperatures of 4, 10, 14, 18, 22, and 26 °C). Flowering was hastened under high temperatures and sowing later in the season (22 Mar.). To determine the extent to which this seasonal effect was due to photoperiod, a second experiment was conducted where plants were grown under controlled daylengths (8, 11, 14, and 17 h·d-1) within six temperature-controlled glasshouse compartments (set to provide minimum temperatures of 6, 10, 14, 18, 22, and 26 °C). The rate of progress to first flowering increased linearly with lengthening photoperiod up to a critical photoperiod of 14.4 h·d-1, while further increases in daylength had no further affect in hastening flowering. The rate of progress to flowering increased linearly with increasing temperature, however, the optimum temperature, at which the rate of progress to flowering was maximal, was lower under short days compared to long days. Furthermore, the rate of progress to flowering increased linearly with increasing photosynthetic photon flux (PPF). Data from both experiments were analyzed to construct a model to predict the effects of temperature, photoperiod, and PPF on time of flowering in petunia. This model accurately (r 2 = 0.88) predicted the flowering times of a different set of plants sown on three dates and grown under six temperature regimes (6, 10, 14, 18, 22, and 26 °C).
timing of CO 2 enrichment should be considered, as the increased air exchange rate during periods of active ventilation, either for temperature or humidity control, minimizes its efficacy. Supplemental lighting, temperature control, and CO 2 enrichment