Search Results

You are looking at 1 - 10 of 88 items for :

  • "source-sink relationships" x
  • Refine by Access: All x
Clear All
Free access

Jingwei Dai and Robert E. Paull

The inflorescence of Protea neriifolia B. Br. was two-thirds of the total cut floral stem fresh weight and significantly influenced blackening of the attached 20 to 30 leaves. Floral stems harvested at five developmental stages were characterized for inflorescence diameter, fresh and dry weights, respiration, and nectar production. Inflorescence diameter and fresh and dry weights increased from stage 1 (very tight bud) to stage 5 (bracts reflexed). Respiration rate was high in stages 1 and 3. Nectar production began at stage 4 (open, cylindrical flower) and increased from 2.7 to 9.8 ml per flower with 15% to 23.5% total soluble solids as the flower opened. Postharvest inflorescence diameter, respiration rate, and nectar production increased and leaf blackening decreased when floral stems were placed in 5% (w/v) sucrose solution. Application of 14C-sucrose to a leaf subtending the inflorescence lead to >50% of the radioactivity being found in the nectar within 24 hours. These data indicate that leaf blackening in protea is the result of depletion of carbohydrate by the inflorescence, and that this depletion is primarily due to the sugar demand for nectar production.

Free access

G. Fernandez and M. Pritts

Seasonal changes in growth, photosynthetic rates, temperature, and light response curves of `Titan' red raspberry (Rubus idaeus L.) were obtained from potted plants grown under field conditions. Primocane dry weight accumulation underwent two phases of linear growth at the beginning and the end of the season, but growth slowed during fruiting. This slower rate of dry weight accumulation also coincided with an increase in root dry weight. Primocane NAR and SLA were highest early in the season. Light response curves differed depending on cane type and time of year. Floricane photosynthetic rates (A) were high during the fruiting period, while primocane A rates remained steady throughout the season. Both primocane and floricane leaflets displayed a midday drop in A rate, with a partial recovery in late afternoon. Photosynthetic rates of both primocane and floricane leaves were very sensitive to high temperatures. Temporal convergence of sink demand from fruit, primocanes, and roots occurs when plants experience high temperatures. This may account for low realized yields in raspberry and the high level of yield component compensation typical of source-limited plants.

Free access

Justine E. Vanden Heuvel*

Fruiting and vegetative greenhouse-grown cranberry uprights (Vaccinium macrocarpon Ait.) were subjected to four defoliation levels (0%, 25%, 50%, 75%) on one of three dates during the growing season. Seven days following defoliation, vines were destructively harvested and carbohydrate concentration was quantified using HPLC. Prior to new growth, defoliation did not affect the concentration of total non-structural carbohydrates (TNSC) in the uprights, or the partitioning of water-soluble (i.e., sucrose, glucose, fructose) to ethanol-insoluble (i.e., starch) carbohydrates, even though uprights with lower leaf areas had higher net CO2 assimilation rates (A). At 2 weeks post-bloom, TNSC concentration was reduced in defoliated vines, although A was not affected by defoliation. Prior to harvest, TNSC concentration was reduced in vines subjected to defoliation while A was unaffected, although the positive relationship between soluble carbohydrate concentration and leaf area per upright reached an asymptote, while the direct relationship between starch concentration and leaf area remained linear. Carbohydrate production and partitioning of an upright was unaffected by the presence of a single fruit throughout the experiment. These results suggest that carbohydrate production in cranberry uprights may be sink-limited prior to fruiting, and then becomes source-limited as the growing season progresses.

Free access

Gina E. Fernandez and Marvin P. Pritts

Seasonal changes in growth, mean maximal photosynthetic rates, and the temperature and light response curves of `Titan' red raspberry (Rubus idaeus L.) were obtained from potted plants grown under field conditions. Primocane dry weight accumulation increased steadily at the beginning and the end of the season, but growth slowed midseason during fruiting. The slower midseason dry-weight accumulation rate coincided with an increase in root dry weight. Primocane net assimilation rate (NAR) was highest early in the season. Floricane photosynthetic rates (A) were highest during the fruiting period, while primocane A remained steady throughout the season. Primocane and floricane leaflets displayed a midday depression in A under field conditions, with a partial recovery in the late afternoon. Photosynthetic rates of primocane and floricane leaves were very sensitive to temperature, exhibiting a decline from 15 to 40C. Light-response curves differed depending on cane type and time of year. A temporal convergence of sink demand from fruit, primocanes, and roots occurs when plants experience high temperatures. These factors may account for low red raspberry yield.

Free access

Sang Gyu Lee* and Chiwon W. Lee

The pattern of C14 carbohydrate translocation and distribution from source leaf to various plant parts in watermelon grown in the greenhouse and field was investigated. Seedling-grown plants were pruned to have two branches with only one of them carrying a fruit. When leaves at four different positions (on fruit-bearing node, on fifth node above and below it, and on fifth node from the base of the non-fruit-bearing stem) were exposed to 14CO, the distribution of C14 2 compounds to different parts (fruit, stem, leaf, root) of the plant varied. In all treatments, the fruit was the strongest sink, followed by stem, leaf and root tissues. The highest percentage of C14 photo-assimilates was transferred out of the source when the leaf borne on the fruit-bearing node was exposed to 14CO2 in both greenhouse and field grown plants. Translocation of C14 compounds from the leaves on the fifth node above and below the first fruit-carrying node was similar. Only 29% of C14 was transferred from the source leaf borne on the fifth node of the non-fruit bearing branch in the greenhouse, as compared to more than 46% of C14 from other source leaves. Accumulation of C14 in the root tissues was highest when source leaves were borne on the non-fruit bearing branch. In general, field-grown plants had higher percentages of C14 translocated as compared to greenhouse-grown plants.

Free access

Justine E. Vanden Heuvel and Carolyn J. DeMoranville

.C. Vorsa, N. Poole, A.P. 1996 Fruit mass development in three cranberry cultivars and five production regions J. Amer. Soc. Hort. Sci. 121 680 685 Fernandez, G.E. Pritts, M.P. 1994 Growth, carbon acquisition, and source-sink relationships in ‘Titan’ red

Free access

Riccardo Lo Bianco, Mark Rieger, and She-Jean S. Sung

Sorbitol is the major photosynthetic product in peach [Prunus persica (L.) Batsch.]. In sink tissues, sorbitol is converted to fructose via NAD+-dependent SDH. A new procedure is described that allows rapid, simple quantification of SDH activity in growing tissues. The procedure uses only 0.01 to 5 g of fresh tissue per sample, such that a single shoot tip, a single root tip, or ≈5 g of fruit flesh can be assayed for SDH activity. Storage of samples at 4 or -20 °C overnight resulted in significant loss of enzyme activity. Thus, freshly harvested tissues were ground with sand in buffer at 2 °C in a mortar and pestle, and the homogenate was centrifuged at 3000 g n to remove particulate matter and sand. The supernatant was desalted on a Sephadex G-25 column, and the eluent was assayed for SDH activity immediately. Activity was determined by measuring the production of NADH per minute in the assay mixture using a spectrophotometer (340 nm). Tris buffer at pH 9.0 was the best for extraction of peach SDH. Activity of SDH was strongly inhibited by dithiothreitol (DTT) in the extraction mixture and by DTT, L-cysteine, or SDI-158 in the assay mixture, similar to results reported for SDH from mammalian tissues. Peach SDH has a Km of 37.7 mm for sorbitol and a pH optimum of 9.5, similar to those reported for apple (Malus × domestica Borkh.) SDH. Unlike older protocols for SDH activity in plant tissues, the new procedure features reduced sample size (1/10 to 1/100 of that which was previously used), smaller volumes of buffer, fewer buffer ingredients, greatly reduced time for sample preparation, yet comparable or higher values of SDH specific activity. Following the same procedure, SDH activity was also measured in Prunus fremontii Wats., Prunus ilicifolia (Nutt.) Walp., and Marianna 2624 plum (P. cerasifera Ehrh. × P. munsoniana Wight & Hedr.).

Free access

S.A. Weinbaum, F.J.A. Niederholzer, S. Ponchner, R.C. Rosecrance, R.M. Carlson, A.C. Whittlesey, and T.T. Muraoka

Four adjacent heavily cropping 12-year-old `Petite d'Agen' prune (Prunus domestica L.) trees were selected, and two of the trees were defruited in late spring (28 May) after the spring growth flush and full leaf expansion. Trees received K daily through the drip-irrigation system, and 15N-depleted (NH4)2SO4 was applied twice between the dates of defruiting and fruit maturation. Trees were excavated at the time of fruit maturity (28 July) and fractionated into their component parts. The following determinations were made after tree excavation and sample processing: tree dry weight, dry weight distribution among the various tree fractions (fruit, leaves, roots, trunk, and branches), tree nutrient contents, within-tree nutrient distribution, total nonstructural carbohydrates (TNCs), and recovery of labeled N. Trees only recovered ≈3% of the isotopically labeled fertilizer N over the 6-week experimental period. Heavily cropping trees absorbed ≈9 g more K per tree (17% of total tree K content) during the 2-month period of stage III fruit growth than defruited trees. The enhanced K uptake in heavily cropping trees was apparently conditioned by the large fruit K demand and occurred despite greatly reduced levels of starch and TNCs relative to defruited trees. Fruit K accumulation in heavily cropping trees was accompanied by K depletion from leaves and perennial tree parts. Except for K, fruited and defruited trees did not differ in nutrient content.

Full access

Todd C. Einhorn, Debra Laraway, and Janet Turner

The effect of crop load level on vegetative growth, fruit growth, yield, fruit quality, surface pitting, crop value and return bloom was studied over a 2-year period on 9- and 10-year-old ‘Sweetheart’/‘Mazzard’ sweet cherry (Prunus avium) trees. In early spring, whole-tree crop loads were adjusted to two different levels by removal of reproductive buds (either 50% or all but one) from spurs and compared with an unthinned control. In 2009, heavy crop loads of unthinned trees reduced fruit size by 30 days after full bloom (DAFB). At harvest, fruit diameter of thinned treatments was increased 22% and 27% compared with unthinned fruit. Fruit quality attributes [soluble solids concentration (SS), fruit firmness, and total acids (TA)] were significantly greater for thinned treatments. Thinned treatment yields were reduced 40% to 54% relative to unthinned trees, with greater percentages of fruit in large size classes. Despite significantly fewer fruit per tree, moderately thinned trees had a higher estimated crop value ($142 per tree) than unthinned trees ($125 per tree). Crop value was lowest for the heavily thinned treatment ($107 per tree), reflecting overthinning. In 2010, shoot growth was negatively related to crop load level. Fruit growth of unthinned trees was not significantly affected by higher fruit density until 89 DAFB. Yield of 2010 unthinned trees was 87% of 2009, while thinned tree yields were similar between years. Improved fruit quality and greater percentages of large fruit were observed for thinned treatments in 2010; however, crop value was highest for unthinned trees ($190 per tree), even though 18% of the fruit were too small for fresh market sale. Surface pitting was unaffected by crop load level in either year. Return bloom (flowers per reproductive bud and reproductive buds per spur) was significantly, negatively related to the prior season's crop load in 2010 and 2011. In the current sweet cherry pricing structure, higher crop value is associated with large volumes of medium-sized fruit. Thinning to manage crop load of low-medium density, productive ‘Sweetheart’/‘Mazzard’ trees will not be an annual requirement, though in heavy fruit set years crop load management will improve crop value.

Free access

Jean-Pierre Privé, J.A. Sullivan, and J.T.A. Proctor

Leaf removal, cane girdling, and 14C translocation patterns were used to study source-sink relationships of primocane-fruiting (PF) red raspberries. Although the leaves in the reproductive zone were most important for vegetative and reproductive development, compensatory effects between the cane leaves were evident. When 14C translocation was studied in the reproductive portion of the cane, the lateral closest to the 14C-treated leaf was the major sink for carbohydrate from that leaf, independent of leaf position or reproductive development. Thereafter, partitioning to leaves and/or flowers or fruits above the 14C-treated leaf was related to leaf phyllotaxy 75% of the time.