Search Results

You are looking at 1 - 10 of 96 items for :

  • "production efficiency" x
  • HortScience x
Clear All

at harvest, and production efficiency of a procumbent cultivar in a warm climate region. Materials and Methods Vineyard description and experimental layout This study was conducted from 2009 to 2011 at a commercial vineyard planted with ‘Syrah

Free access

Abstract

A 2-year study involving 15 garden vegetables and 5 different-sized gardens was conducted to assess land, labor, and production efficiency. As garden size increased, total production increased, but yield per unit area decreased. Relative labor inputs varied with garden size, but were greatest for harvesting (38%) followed by planting (23%), miscellaneous (22%), and weeding (17%). The highest production in relationship to labor and land use was obtained with beets, carrots, cucumbers, onions, tomatoes, and summer squash. The poorest yielding crops were pole and bush beans, sweet corn, peas, peppers, and radishes. Total vegetable yield for the 2-year study averaged 6.2 kg/m2.

Open Access

The day-neutral, semidwarf rice (Oryza sativa L.) cultivar Ai-Nan-Tsao was grown in a greenhouse under summer conditions using high-pressure sodium lamps to extend the natural photoperiod. After allowing 2 weeks for germination, stand establishment, and thinning to a consistent planting density of 212 plants/m2, stands were maintained under continuous lighting for 35 or 49 days before shifting to 8- or 12-h photoperiods until harvest 76 days after planting. Non-shifted control treatments consisting of 8-, 12-, or 24-h photoperiods also were maintained throughout production. Tiller number increased as duration of exposure to continuous light increased before shifting to shorter photoperiods. However, shoot harvest index and yield efficiency rate were lower for all plants receiving continuous light than for those under the 8- or 12-h photoperiods. Stands receiving 12-h photoperiods throughout production had the highest grain yield per plant and equaled the 8-h-photoperiod control plants for the lowest tiller number per plant. As long as stands were exposed to continuous light, tiller formation continued. Shifting to shorter photoperiods late in the cropping cycle resulted in newly formed tillers that were either sterile or unable to mature grain before harvest. Late-forming tillers also suppressed yield of grain in early-forming tillers, presumably by competing for photosynthate or for remobilized assimilate during senescence. Stands receiving 12-h photoperiods throughout production not only produced the highest grain yield at harvest but had the highest shoot harvest index, which is important for resource-recovery strategies in advanced life-support systems proposed for space.

Free access

Abstract

There were no differences between a large (29.0 ft branch spread) and a small (10.5 ft branch spread) ‘McIntosh’ apple tree in total dry matter accumulated per unit of occupied land. However, the small tree produced 80.6% more fruit on a unit area basis. In terms of leaf efficiency, the small tree produced 60.4% more dry matter per unit weight of leaves than the large tree.

Open Access

Hakonechloa macra Makino 'Aureola' is an ornamental, shade tolerant landscape grass that grows slowly and commands high prices. Hakonechloa plants grown from four initial division sizes, of 1-2, 4-6, 8-10, or 12-15 tiller buds, were evaluated following a complete growing season (105 days). Based on visual observation, we rated 100% of plants grown from the two larger division sizes to be salable compared with only 30% of those from divisions containing 4-6 growing points, and none from the smallest division size. However, divisions of 1-2 tiller buds produced twice as many new shoots and tiller buds per initial tiller bud as did larger division sizes. To produce salable plants in one growing season, results suggest the use of 8-10 tiller bud divisions, but for propagation and increase of stock material, where it is important to obtain the greatest number of new growing points per initial growing point, use of the smaller division sizes is indicated. Hakonechloa plants were grown under shading densities of 0%, 30%, 50%, or 70% provided by polypropylene shade cloth. Shading increased overall growth and improved the appearance and leaf color of Hakonechloa, but at 70% shade density, plants appeared languid and open. For this reason, 50% shading is recommended for nursery production of Hakonechloa macra 'Aureola'.

Free access
Author:

. Understanding how temperature impacts flowering time could allow these petunia cultivars to be grouped into temperature-response groups to improve production efficiency. For example, more temperature-sensitive cultivars, such as ‘Picobella Pink’ and ‘Wave Purple

Open Access

`Redhaven' peach trees [Prunus persica (L.) Batsch.] on their own roots or budded to seven rootstock [`Bailey', `Siberian C', `Lovell', `Halford' (seedlings), GF 655.2, GF 677 (`Amandier'), or `Damas' (GF 1869) (clonal)] were evaluated for rootstock influence on flower bud hardiness, live pistils at bloom, thinning requirements, marketable yield, and production efficiency after exposure to temperatures lower than – 23C in 1987 and to - 26C in 1988. In 1987, flower bud hardiness was as great on `Siberian C' as on own-rooted `Redhaven' and greater than on the other rootstock. Fewer live pistils were observed during bloom on GF 677 than on `Siberian C', `Lovell', `Damas', or self-rooted trees in 1987. In 1988, flower bud hardiness was greater on `Siberian C' and `Bailey' than on GF 677. At bloom, `Lovell' and `Siberian C' rootstock carried more flowers with live pistils than `Damas'.`Siberian C' and `Lovell' required significantly greater fruit thinning than all other rootstock and self-rooted trees. GF 677 produced a larger marketable crop than GF 655.2 or `Damas'. In addition, `Bailey', `Lovell', and self-rooted trees produced a significantly larger crop than `Damas'. No significant rootstock effect on production efficiency was detected in either year. Tree vigor during the growing season preceding each freeze did not significantly influence flower bud survival or productivity.

Free access
Author:

In 1984 trees of `Starkspur Supreme Delicious' apple on 15 rootstocks were planted at 28 locations in North America according to guidelines established by The North Central Regional Cooperative Project (NC-140). The largest trees were on P.18, ANT.313, B.490 and seedling. Producing trees approximately 70% the size of seedling were rootstocks P.1 and M.7 EMLA while M.26 EMLA and C.6 were 50% the size of seedling. A group of rootstocks 30% the size of seedling or smaller were B.9, MAC.39, P.22, P.2, P.16. Rootstocks with high production efficiency were P.16, 8.9, P.22, P.2 and C.6. Rootstocks with low production efficiency similar to apple seedling were MAC.1, M.4., B.490, P.18 and ANT.313.

Free access

Studies were completed to optimize Stage II production efficiency of Pontederia cordata, a native wetland plant. Basal shoot tips from established cultures were subcultured into 60 ml glass culture tubes, 155 ml glass baby food jars, 350 ml GA7 polypropylene vessels or 500 ml clear polypropylene tissue culture containers containing full strength Linsmaier and Skoog mineral salts and organics supplemented with 3.0% sucrose, 2.0 mg/liter benzyladenine, 1.0 mg/liter indole-3-acetic acid, 50 mg/liter citric and ascorbic acids solidified with 8 g/liter TC® agar. Shoot tip to medium volume (ml) ratio was maintained 1:10 in each culture vessel. Vessel type had no significant effect on either shoot quality or multiplication rate (9.5 shoots/shoot tip/28 days). A maximum production efficiency of 1216 shoots/ft2/28 days was achieved using GA7 vessels. Stage II shoot multiplication rate significantly decreased when the interval between subculture exceeded 28 days.

Free access