Search Results

You are looking at 1 - 10 of 587 items for :

  • "pine bark" x
  • HortScience x
Clear All

In the eastern United States, pine bark is the predominate substrate component in outdoor nursery container plant production. Pine bark is a byproduct of the timber industry and is stripped off logs following harvest. Once the removed pine bark is

Free access

Pine bark is the primary component in container nursery substrates, comprising 60% to 80% by volume of most substrate blends. Pine bark is a commodity used by other industries including fuel generation, fiber ( Lu et al., 2006 ), charcoal, landscape

Free access

In the eastern United States, nurseries use either loblolly pine ( Pinus taeda L.) or longleaf pine ( Pinus palustris Mill.) bark as the primary organic component in soilless substrates. Pine bark was initially used as a growing substrate in the

Free access

’ hakonechloa [ Hakonechloa macra (Makino) Honda] grew best in a 3 pine bark: 2 sphagnum peat: 1 sand (by volume) substrate with no DL amendment (pH 4.5). They speculated this favorable response was due to the plant’s adaptation to the low pH soil found in the

Open Access

. (2001) and Michalak et al. (2015) concluded that P runoff from agricultural operations is a primary contributor to eutrophication in the United States. Substrates used in containerized nursery crop production predominantly comprise pine bark ( Pinus

Open Access

in bark and peat-based substrates ( Handreck and Black, 2002 ; Reed, 1996 ). Empirically, Warren and Bilderback (1992) compared rates (0, 27, 54, 67, and 81 kg·m −3 ) of arcillite in a pine bark substrate and reported arcillite increased available

Free access

-rich by-product of pyrolysis, can reduce substrate pore size by nesting between larger particles of pine bark and providing greater water-holding capacity. This reduction in substrate pore size has been demonstrated to increase the amount of available

Free access

evaluate the effect of storage duration, storage temperature, and filtration before storage on pH, EC, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), and nutrient ion concentrations of PT samples of pine bark– and peat-based substrates

Open Access

). Of these, research and development of new substrates to replace conventionally used peatmoss and pine bark (PB) substrates have increased in recent years. In addition to developing and using new substrates, much work has focused on managing fertility

Free access

substrates ( Aaron, 1982 ; Hoitink and Poole, 1979 ). Recently, supplies of pine bark (PB) in many areas across the southeastern states have been erratic. Reduced availability and higher costs have been driven by the reduced supply resulting from decreased

Free access