Search Results

You are looking at 1 - 10 of 1,304 items for :

  • Refine by Access: All x
Clear All
Free access

Subhrajit K. Saha, Laurie E. Trenholm, and J. Bryan Unruh

leach through soils and contaminate groundwater if not properly applied, although other research has shown that properly applied fertilizer is assimilated by the grass ( Erickson et al., 2001 ; Snyder et al., 1984 ). Proper fertilizer management

Free access

Catherine S.M. Ku and David R. Hershey

Abbreviations: EC, electrical conductivity EC a , EC of the applied solution; EC e , EC of a saturated medium extract; ET, evapotranspiration; LF, leaching fraction; LR, leaching requirement; M a , mass of pot after irrigation when at container

Full access

A. Liptay and P. Sikkema

Tomato (Lycopersicon esculentum Mill) seedlings given 0.3 to 0.4 L/tray per day of a mineral solution containing (in mg·L-1) 150N-47P-216K-64Ca-40Mg maintained optimal height at 10 to 13 cm for Ontario processing tomato transplants. Seedlings given greater fertigation volumes were too tall and spindly to use as transplants. Transplants given 0.2 L of water per tray per day were very short (6 cm) compared to those receiving 0.3 to 0.4 L. As fertigation volume was increased from 0.2 to 0.7 L, shoot N remained constant while root N increased. Shoots had about a 3-fold higher level of N, P, and K than the roots. Calcium and magnesium were similar in roots and shoots. Mineral leaching from the trays was 1% of the total volume applied for the 0.4-L and 4% for the 0.7-L treatment.

Full access

Timothy K. Broschat

Release rates for 13 commercially available soluble and controlled-release K fertilizers were determined in sand columns at 21C. Potassium chloride, KMgSO4, and K2CO3 were leached completely from the columns within 3 or 4 weeks. Osmocote 0N-0P-38.3K, Multicote 9N-0P-26.7K, the two S-coated K2SO4 products, and Nutricote 2N-0P-30.8K Ty 180 all had similar release curves, with fairly rapid release during the first 20 to 24 weeks, slower release for the next 10 to 12 weeks, and virtually no K release thereafter.

Full access

T.K. Hartz and R.F. Smith

maximized when in-season N leaching potential is significant. Many studies documenting CRF benefits were conducted on sandy soils and in environments receiving significant in-season precipitation; CRF research on potato production in Florida ( Hutchinson

Full access

Laurie E. Trenholm and Jerry B. Sartain

assess BMP recommendations, FDEP-funded research is currently underway to quantify nutrient leaching in three locations statewide and to verify the existing BMPs. Results from this research may also assist in providing recommendations for some of the

Free access

James E. Altland and James C. Locke

thus far seems to indicate similar potential benefits in soilless substrates including additions of some nutrients, reduction in leaching of nitrates and phosphates, beneficial shifts in microbial populations, and improved physical properties. Despite

Full access

Sueyde Fernandes de Oliveira Braghin, Simone C. Mello, Jéssika Angelotti-Mendonça, Keigo Minami, and Yuncong C. Li

quality, increasing the fertilizer use efficiency and preventing losses of nutrients, especially nitrogen (N) by leaching or denitrification ( Fageria and Baligar, 2005 ). CRFs are designed to release nutrients into the grown medium at a rate more closely

Free access

Catherine S.M. Ku and David R. Hershey

Abbreviations: EC, electrical conductivity; EC a , EC of the applied solution; EC e , EC of a saturated medium extract; ET, evapotranspiration; LF, leaching fraction; LI, leaching intensity; LR, leaching requirement; M a , mass of pot after

Full access

Aaron Heinrich, Richard Smith, and Michael Cahn

regions in California (the Salinas Valley and Tulare Basin) found that 51% of all N applied to cropland is leached to groundwater ( Harter and Lund, 2012 ). As a result, many wells in these areas exceed the U.S. Environmental Protection Agency (EPA