Search Results

You are looking at 1 - 6 of 6 items for :

  • "herbicide tolerance" x
  • Journal of the American Society for Horticultural Science x
Clear All

Experiments were developed to study the inheritance of the high level of tolerance to the herbicide bentazon exhibited by the pepper (Capsicum annuum L.) cultivar Santaka. Parental, F1, F2, and backcross populations of the cross `Santaka' × `Keystone Resistant Giant' were evaluated for injury in a greenhouse test using bentazon at a rate of 4.5 kg·ha-1 (1.1 kg×ha-1 is the rate recommended for most applications). Additionally, parental and F1 populations were evaluated for injury under field conditions using sequential bentazon applications of 4.5, 4.5, 6.75, and 9.0 kg·ha-1. A single, dominant gene determined tolerance. F1 hybrid plants (heterozygous at the locus conditioning tolerance) exhibited a high level of tolerance under field conditions. Results of the greenhouse test suggested a possible cytoplasmic involvement in the expression of the tolerance gene, but the results of the field test provided strong evidence that cytoplasm does not play a significant role. We propose that this gene be designated Bentazon tolerance and symbolized Bzt. Chemical name used: 3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (bentazon).

Free access

Itea virginica L. `Sprich' (virginia sweetspire), Salix alba L. (white willow), and S. gracilistyla var. melanostachys (Mak.) Miq. (black pussywillow) were treated with a 4 mg·L-1 suspension of two herbicides, isoxaben and oryzalin, a water control (water) or a nonsaturated control (control) for 9 days. Growth and photosynthetic responses were monitored before, during and after the 9-day treatment for a total of 51 days. Growth index of white willow and virginia sweetspire was only reduced by isoxaben treatment while both herbicides reduced the growth index for black pussywillow compared to control. Plant dry weights of the willows were not affected by day 9. Final dry weight was lower for both herbicide treatments for all taxa. The water treatment resulted in lower total dry weight than control only for virginia sweetspire. Isoxaben reduced photosystem II efficiency (Fv/Fm) and CO2 assimilation (A) following release from treatments of virginia sweetspire and black pussywillow. There were few differences in Fv/Fm and A for white willow. The response to oryzalin was similar to water for most parameters measured for virginia sweetspire and white willow. Growth was more strongly affected by oryzalin for black pussywillow than for other taxa but there were few differences in Fv/Fm or A between oryzalin and control for any of the taxa. Virginia sweetspire and white willow showed promise for use in phytoremediation of oryzalin but none of the taxa performed well under the levels of isoxaben used. Chemical names used: isoxaben (N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyly]-2,6-dimethoxybenzamide); oryzalin (4-(dipropylamino)-3,5-dinitrobenzenesulforamide).

Free access

Canna ×generalis L.H. Bail. (canna), Pontaderia cordata L. (pickerel weed), and Iris L. × `Charjoys Jan' (`Charjoys Jan' iris) were exposed to a 5 mg·L-1 suspension of isoxaben or oryzalin or a water control for 9 days. Growth and photosynthetic responses were monitored throughout treatment and for an additional 22 d after termination of treatment. By the end of the experiment plant height of pickerel weed was reduced by oryzalin. Isoxaben resulted in lower height and reduced leaf emergence for all three taxa by the end of the experiment. Leaf CO2 assimilation (A) and transpiration (E) were lower for oryzalin-treated canna only 17 and 18 days after treatment, several days after treatment had been terminated. Leaf A and E were lower for oryzalin-treated pickerel weed and `Charjoys Jan' iris for most days after day 17. Isoxaben reduced A and E of all three plants for all days measured except day 6 for `Charjoys Jan' iris. Lower photosystem II efficiency (Fv/Fm) was found for isoxaben-treated canna from day 5 onward and days 7, 20, and 23 for pickerel weed and `Charjoys Jan' iris. Rapid reduction in A and Fv/Fm for all plants treated with isoxaben indicates a direct effect of isoxaben on photosynthesis. Reductions in growth and photosynthetic parameters due to oryzalin were minimal for all plants indicating these plants would be useful in phytoremediation systems where oryzalin is present. However, growth and photosynthetic parameters were reduced substantially for all plants exposed to isoxaben indicating the taxa studied would not perform well in phytoremediation systems with this level of isoxaben exposure. Chemical names used: isoxaben (N-[3-(1-ethyl-1-methylpropyl)-5-isoxazolyly]-2,6-dimethoxybenzamide); oryzalin (4-(dipropylamino)-3,5-dinitrobenzenesulforamide).

Free access

Some sweet corn (Zea mays L.) hybrids and inbreds can be severely injured by applications of postemergence herbicides. An association was observed between the responses of sweet corn hybrids and inbreds to nicosulfuron and mesotrione, and F2 families derived from a cross of a sensitive (Cr1) and a tolerant (Cr2) sweet corn inbred segregated for response to these two herbicides. These observations prompted us to examine the inheritance of sensitivity in sweet corn to multiple postemergence herbicide treatments with different modes of action and to determine if there was a common genetic basis for cross-sensitivity to these herbicides. The sensitive and tolerant inbreds, progeny in the F1, F2, BC1, and BC2 generations, and BC1S1, BC2S1, F2:3 (S1:2) and F3:4 (S2:3) families were screened for responses to eight herbicide treatments. Based on segregation of tolerant and sensitive progeny and segregation of family responses, our data indicate that a single recessive gene in Cr1 conditioned sensitivity to four acetolactate synthase (ALS)-inhibiting herbicides (foramsulfuron, nicosulfuron, primisulfuron, and rimsulfuron), a 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide (mesotrione), a growth regulator herbicide combination (dicamba + diflufenzopyr), and a protoporphyrinogen oxidase (PPO)-inhibiting herbicide (carfentrazone). Based on highly significant positive correlations of phenotypic responses among BC1S1, BC2S1, F2:3, and F3:4 families, the same gene (or closely linked genes) appeared to condition responses to each of these herbicide treatments. The dominant allele also conditions tolerance to bentazon [a photosystem II (PSII)-inhibiting herbicide] although another gene(s) also appeared to affect bentazon tolerance.

Free access

The American cranberry (Vaccinium macrocarpon Ait.) was genetically transformed with the bar gene, conferring tolerance to the phosphinothricin-based herbicide glufosinate. Plants of one `Pilgrim' transclone grown under greenhouse conditions were significantly injured by foliar treatments of 100 mg·L-1 glufosinate, although the injury was less severe when compared to untransformed plants. However, the same transclone grown outdoors in coldframes survived foliar sprays of 500 mg·L-1 glufosinate and higher, while untransformed plants were killed at 300 mg·L-1. Actively growing shoot tips were the most sensitive part of the plants and at higher dosages of glufosinate, shoot-tip injury was evident on the transclone. Injured transgenic plants quickly regrew new shoots. Shoots of goldenrod (Solidago sp.) and creeping sedge (Carex chordorrhizia), two weeds common to cranberry production areas, were seriously injured or killed at 400 mg·L-1 glufosinate when grown in either the greenhouse or coldframe environment. Stable transmission and expression of herbicide tolerance was observed in both inbred and outcrossed progeny of the above cranberry transclone. Expected segregation ratios were observed in the outcrossed progeny and some outcrossed individuals demonstrated significantly enhanced tolerance over the original transclone, with no tip death at levels up to 8000 mg·L-1. Southern analysis of the original transclone and two progeny selections with enhanced tolerance showed an identical banding pattern, indicating that the difference in tolerance levels was not due to rearrangement of the transgene. The enhanced tolerance of these first generation progeny was retained when second generation selfed progeny were tested.

Free access

Five greenhouse and two Geld experiments were conducted to evaluate tissue culture-propagated (TC) raspberry (Rubus idaeus cv. Heritage) sensitivity to preemergent herbicides. Plant performance was measured by plant vigor, above-ground fresh weight, root development, and primocane number. Simazine and oryzalin caused significant injury to newly planted TC raspberry plants in greenhouse and field experiments. The severity of injury was generally linear with respect to herbicide rate, but no appreciable differences in injury were observed between the granular and spray applications. Napropamide wettable powder caused some foliar injury, but plants recovered within one growing season and growth was equal or superior to the hand-weeded controls. The granular formulation of napropamide produced similar results, but did not cause the initial foliar burn. Pre-plant dipping of roots into a slurry of activated carbon did not prevent simazine or oryzalin injury, but injury was reduced when herbicide applications were delayed. Simazine applied 4 weeks after planting was not Injurious, and oqzalin applied 2 or 4 weeks after planting caused some foliar injury, hut no reduction in plant fresh weight. Delayed treatments of napropamide increased foliar injury. Herbicide tolerance of tissue-cultured plantlets appeared to be less than that of conventionally propagated plants. Chemical names used: N,N-diethyl-2-(1-napthalenyloxy)propanamide (napropamide), 4-(dipropylamino)-3,5-dinitrobenzenesulfonamide (oryzalin), 6-chloro-N,N'diethyl-1,3,5-triazine-2,4-diamine (simazine).

Free access