Search Results

You are looking at 1 - 10 of 68 items for :

  • "crop residues" x
  • HortTechnology x
Clear All

before planting. No fertilizer or irrigation was applied to the vineyard throughout the duration of the experiment. There were five treatments included in the study, including four that used cover crop residues and one that was left unplanted ( Table 1

Full access

crop residue must one wait to sow buckwheat? Third, what are the early- and late-season limits for seeding buckwheat? Fourth, what is the dry matter yield of the buckwheat cover crop? The current research addresses these questions and offers production

Full access

in each plot and all whole cover crop plants (above- and below-ground parts) were collected. Samples were dried to constant weight before biomass determination. Cover crop residue was incorporated into the soil immediately after sampling. The field

Full access
Author:

calculations to be made for sweet corn plant residue, or stover, after harvest of the upper fresh ear. Occasionally, after harvest of marketable ears, the remaining sweet corn crop residue is harvested for livestock feed. The data on nutrient removal by

Full access

quality. Another factor leading to high postharvest nitrate levels is the fact that less than 50% of the crop biomass may be removed during harvest for some crops ( Bottoms et al., 2012 ; Heinrich et al., 2013 ). The remaining crop residues typically have

Full access
Author:

The availability of various conservation tillage (CT) practices along with a variety of cover residues creates an opportunity for farm managers to create new systems for vegetable production. We established various tillage practices and cover crop residues for CT use to determine which systems would continue to deliver high vegetable productivity. Recommendations for using CT based only on a yield perspective would lead us to conclude that full season crops could be grown with some form of CT and respectable yields would be obtainable. Tomato (Lycopersicon esculentum Mill.) production with CT is successfully being practiced in North Carolina in both the mountain valleys and Piedmont region. Because of the cooler soil temperatures with cover residue, summer and especially fall harvested tomatoes produce the least risk in obtaining similar yields as plow/disc production. Our experiments with short season vegetable crops and CT have had mixed results. Cole crops (Brassica L.) grown with CT in early spring or late fall experience soil temperatures cool enough to delay growth compared to plow/disc management. Proper selection of a cover crop residue type and the amount of cover residue can increase yield. Growing short season vegetable crops with CT during the warmest season of the year will reduce the risk of delayed plant growth and thus, decrease the time to harvest.

Full access

Research yields of conservation tillage (CT) snap beans (Phaseolus vulgaris L.) and sweet corn (Zea mays L. var. rugosa Bonaf.) have been less than those produced under conventional tillage. This has been due to soil conditions at planting, the cover crop used, weed control and a lack of proper design in equipment for CT. However, some growers have been successful with CT for sweet corn using hairy vetch (Vicia villosa Roth.) as the cover crop. On-farm demonstrations of CT with cabbage (Brassica oleracea L. Capitata Group), pumpkins (Cucurbita pepo L.), tomatoes (Lycopersicon esculentum Mill.) and watermelons [Citrullus lanatus (Thunb) Matsum. & Nak.] have been successful and with good management it is commercially feasible under Tennessee conditions. Advantages include reduced soil erosion, cleaner products, more efficient application of crop protection chemicals, quicker planting after rainfall, lower energy costs and facilitation of harvest in wet weather. Disadvantages include reduced weed control, modifications of existing equipment, less uniformity in seed coverage and problems with transplanting, cover crop residue in mechanically harvested crops, possible delays in early harvest of fresh market crops due to delayed maturity and limited application of soil protective chemicals.

Full access

Paclobutrazol is a plant growth retardant commonly used on greenhouse crops. Residues from paclobutrazol applications can accumulate in recirculated irrigation water. Given that paclobutrazol has a long half-life and potential biological activity in parts per billion concentrations, it would be desirable to measure paclobutrazol concentration in captured irrigation supplies. However, there are no standard protocols for collecting this type of sample. The objective of this research was to determine if sample container material or storage temperature affect paclobutrazol stability over time. In two experiments, paclobutrazol was mixed in concentrations ranging from 0.04 to 0.2 mg·L−1 and stored in polyethylene, clear glass, or amber glass containers at temperatures of either 4 or 20 °C. Paclobutrazol concentration was measured at 3, 14, and 30 days after the start of each experiment. Across the two experiments, there were no consistent trends in reduction of paclobutrazol concentration with respect to container material or storage temperature. In the first experiment, there was an average of 5% reduction across all treatments from day 0 to 30, whereas in the second experiment, concentration did not decrease over the 30-day time period. These data suggest that paclobutrazol is stable in collected water samples for at least 30 days, and that either glass or polyethylene containers are suitable for collecting greenhouse water samples for analysis of paclobutrazol concentration. A minimum volume of 100 mL was determined to be the optimum to analyze water samples with diverse paclobutrazol concentrations.

Free access

Combinations ofvarious vegetable crop species grown in multiple-cropping sequences using microirrigation on a sandy soil were evaluated for production potential and changes in normal cultural management An initial fall-season fresh-market tomato crop was followed immediately by a winter-season crucifer crop (cauliflower, broccoli, or cabbage), which was followed by a spring-season cucurbit crop (cucumber, zucchini squash, or muskmelon). Studies were conducted over a 3-year period in southwestem Florida. Results showed that when cropping sequences were compared on a basis of a derived relative value index (RVI), the sequence of tomato-cauliflower-zucchini squash significantly outperformed other sequences. Several management concerns particular to the production system (crop residue removal and interference, plastic mulch deterioration and damage, and weed control) were identified and discussed. The potential savings when cropping sequences are compared to individual crop production resulted in net savings (dollar savings less additional production costs) that ranged from $565 to $1212/acre ($1396 to $2993/ha) and $614 to $1316/acre ($1516 to $3251/ha) for the 1986-87 and 1988-89 seasons, respectively.

Free access

Allelopathy can be defined as an important mechanism of plant interference mediated by the addition of plant-produced secondary products to the soil rhizosphere. Allelochemicals are present in all types of plants and tissues and are released into the soil rhizosphere by a variety of mechanisms, including decomposition of residues, volatilization and root exudation. Allelochemical structures and modes of action are diverse, and may offer potential for development of future herbicides. In the past, allelopathy was described by the Romans as a process resulting in the “sickening” of the soil; in particular, chickpea (Cicer arietinum) was described as problematic when successively cropped with other species. Other early plant scientists, such as De Candolle in the 1800s, first described the ability of plant roots to produce toxic exudates. More recently, research has focused on development of weed management strategies using allelopathic crop residues, mechanism of allelochemical action, and gene regulation of allelochemical production. This paper briefly describes a variety of weed and crop species that establishes some form of potent allelopathic interference, either with other crops or weeds, in agricultural settings, in the managed landscape, or in naturalized settings. Recent research suggests that allelopathic properties can render one species more invasive to native species and thus potentially detrimental to both agricultural and naturalized settings. In contrast, allelopathic crops offer strong potential for the development of cultivars that are more highly weed suppressive in managed settings. A new challenge that exists for plant scientists is to generate additional information on allelochemical mechanisms of release, selectivity and persistence, mode of action, and genetic regulation. Armed with this specific information, we can further protect plant biodiversity and enhance weed management strategies in a variety of ecosystems.

Full access