Search Results
susceptibility to bacterial spot (J.W. Scott, unpublished data). Bacterial spot is also a major disease of tomato in Florida and in many regions of the world where the crop is grown in humid environments. The disease is caused by several species of Xanthomonas
The lack of resistance to bacterial diseases increases both the financial cost and environmental impact of tomato (Lycopersicon esculentum Mill.) production while reducing yield and quality. Because several bacterial diseases can be present in the same field, developing varieties with resistance to multiple diseases is a desirable goal. Bacterial spot (caused by four Xanthomonas Dowson species) and bacterial speck (caused by Pseudomonas syringae pv. tomato Young, Dye and Wilkie) are two economically important diseases of tomato with a worldwide distribution. The resistance gene Pto confers a hypersensitive response (HR) to race 0 strains of the bacterial speck pathogen. The locus Rx3 explains up to 41% of the variation for resistance to bacterial spot race T1 in field trials, and is associated with HR following infiltration. Both Pto and Rx3 are linked in repulsion phase on chromosome 5. We made a cross between two elite breeding lines, Ohio 981205 carrying Pto and Ohio 9834 carrying Rx3, to develop an F2 population and subsequent inbred generations. Marker-assisted selection (MAS) was applied to the F2 progeny and to F2:3 families in order to select for coupling-phase resistance. Thirteen homozygous progeny from 419 F2 plants and 20 homozygous families from 3716 F3 plants were obtained. Resistance was confirmed in all selected families based on HR in greenhouse screens using bacterial speck race 0 and bacterial spot race T1 isolates. Resistance to bacterial spot race T1 was confirmed in the field for 33 of the selected families. All selected families were also resistant to bacterial speck in the field. MAS was an efficient tool to select for desirable recombination events and pyramid resistance.
Hawaii 7981 tomato (Lycopersicon esculentum Mill.), resistant to race T3 of the bacterial spot pathogen [Xanthomonas campestris pv. vesicatoria (Doidge) Dye], was crossed to the susceptible tomato inbred, Fla. 7060, and subsequently F2 and backcross seed were obtained. These generations were planted in the field, inoculated with the race T3 pathogen and evaluated for disease severity over two summer seasons. Data were tested for goodness-of-fit to a model based on control by the incompletely dominant gene Xv3 that confers hypersensitivity. The F1 was intermediate in disease severity to the parents for both seasons. When data were combined over both seasons, the backcrosses fit the expected 1:1 ratios although each deviated from the expected ratio in one of the 2 years tested. The F2 did not fit the expected 1:2:1 ratio in either year or when data from the two years were combined due to a deficiency of resistant plants. Thirty-three F2 plants representing an array of disease severities and hypersensitivity reactions were selected in the second season and their F3 progeny were inoculated and evaluated for disease severity. Hawaii 7981 was significantly more resistant than the 12 most resistant F3 selections even though all expressed hypersensitivity. A hypersensitive F3 with intermediate field resistance was crossed to Hawaii 7981 and subsequently, F2 and backcross generations were obtained. These generations were field inoculated with the race T3 pathogen and evaluated for disease severity. Hawaii 7981 was significantly more resistant than the F3 parent as in the previous year. The data did not fit an additive-dominance model and epistatic interactions were significant. Thus, it appears that field resistance to race T3 of bacterial spot found in Hawaii 7981 is conferred quantitatively by Xv3 and other resistance genes. Breeding implications are discussed.
Abstract
Hawaii 7998 (foliage resistant to bacterial spot) was crossed with ‘Walter’ (susceptible) and F1, backcross, and F2 generations were derived. These genotypes were grown in the field at Bradenton, Fla. in the summers of 1984 and 1985 and inoculated with Xanthomonas campestris pv. vesicatoria, the incitant of bacterial spot. Disease severity for respective genotypes was similar both years, although somewhat greater in 1985. Disease severity in the F1 was intermediate to the parents, but slightly skewed toward resistance both years. The percentage of F2 plants with resistance comparable to Hawaii 7988 was 9.6% in 1984 and 4.6% in 1985. There was no evidence of cytoplasmic inheritance from three sets of reciprocal crosses tested in 1985. The data fit an additive-dominance genetic model, but dominance variance was negative both years, which indicates a small or negligible dominance effect. The negative dominance variance resulted in biased estimates of additive variance, narrow-sense heritability, and the number of effective factors. Nevertheless, narrow-sense heritability was moderate to high. When incorporating this resistance into new genetic backgrounds, we suggest that a modified backcrossing scheme with rigorous disease screening be used to obtain plants from homozygous resistant BCF3 lines before crossing.
Crosses were made between tomato (Lycopersicon esculentum Mill.) inbreds susceptible to races T2 and T3 of bacterial spot (Xanthomonas vesicatoria and Xanthomonas campestris pv. vesicatoria, respectively) and accession PI 114490 with resistance to races T1, T2, and T3. Resistance to race T2 was analyzed using the parents, F1, and F2 generations from one of the crosses. The F1 was intermediate between the parents for disease severity suggesting additive gene action. The segregation of F2 progeny fit a two-locus model (χ2 = 0.96, P = 0.9-0.5) where four resistance alleles are required for a high resistance level, two or three resistance alleles provide intermediate resistance, and zero or one resistance allele results in susceptibility. The narrow sense heritability of resistance to T2 strains was estimated to be 0.37 ± 0.1 based on F2 to F3 parent-offspring regression. A second cross was developed into an inbred backcross (IBC) population to facilitate multilocation replicated testing with multiple races. Segregation for T2 resistance in the inbred backcross population also suggested control was by two loci, lending support to the two-locus model hypothesized based on the F2 segregation. To determine if the same loci conferred resistance to the other races, selections for race T2 resistance were made in the F2 and F3 generations and for race T3 resistance in the F2 through F4 generations. Six T3 selections (F5), 13 T2 selections (F4's that diverged from seven F2 selections), and control lines were then evaluated for disease severity to races T1, T2, and T3 over two seasons. Linear correlations were used to estimate the efficiency of selecting for resistance to multiple races based on a disease nursery inoculated with a single race. Race T1 and race T2 disease severities were correlated (r ≥ 0.80, P< 0.001) within and between years while neither was correlated to race T3 either year. These results suggest that selecting for race T2 resistance in progeny derived from crosses to PI 114490 would be an effective strategy to obtain resistance to both race T1 and T2 in the populations tested. In contrast, selection for race T3 or T2 will be less likely to result in lines with resistance to the other race. PI 114490 had less resistance to T3 than to T2 or T1. Independent segregation of T2 and T3 resistance from the IBC population derived from PI 114490 suggests that T3 resistance is not controlled by the same genes as T2 resistance, supporting the linear correlation data.
Four greenhouse leaf inoculation methods for screening Japanese plum (Prunus salicina L. and hybrids) for resistance to Xanthomonas campestris pv. pruni (Smith) Dye were compared for repeatability, ability to differentiate among plant genotype responses, and correlations with field ratings. Clonally propagated trees were inoculated artificially in a greenhouse by immersing leaves in 2.5 × 108 cfu/ml inoculum (DIP), rubbing the adaxial side of leaves with a slurry of 2.5 × 108 cfu/ml inoculum and Carborundum powder (CARB), infiltrating leaves with 5 × 105 cfu/ml inoculum using a needle-less syringe (INFS), and infiltrating with 5 × 106 cfu/ml inoculum (INF6). No greenhouse method was superior in all assessment categories. The CARB method was most repeatable (t = 0.78) but had a low Spearman's correlation (rs = 0.29), indicating that greenhouse rankings did not correspond closely with field rankings. The INF6 method was unsuitable because it did not differentiate between plant genotypes. The DIP method appeared most suitable, having moderate repeatability (t = 0.46) for four observations per leaf and moderate Spearman's correlation with field performance (rs = 0.56). The INF5 method may be appropriate for identifying bacterial spot resistance that is associated with resistance in the leaf mesophyll.
Abstract
A wick bioassay was developed to screen peach [Prunus persica (L.) Batsch] shoot cultures for resistance to bacterial spot [Xanthomonas campestris pv. pruni (E. F. Sm.) Dows)]. Three weeks after inoculation, the number of colony forming units (CFU) from 1-cm stem sections excised from highly susceptible cultivars was significantly greater than CFU from several resistant cultivars. Neither growth regulators nor the length of time that shoots were maintained in vitro prior to inoculation significantly influenced the response of these cultivars to bacterial leaf spot. This technique should be useful in screening for somaclonal variants obtained from peach cell cultures.
. 2009 A SNP marker can differentiate loose clustered clones of Pinot Noir Acta Hort. 827 471 473 Hutton, S.F. Scott, J.W. Yang, W. Sim, S.C. Francis, D.M. Jones, J.B. 2010 Identification of QTL associated with resistance to bacterial spot race T4 in
Abstract
The effects of replanting stand-deficient plots on marketable tomato (Lycopersicon esculentum Mill.) fruit size and yields were investigated at Bradenton, Fla. during the 1986 spring and fall seasons. Treatments consisted of a control (10-plant plot) and plots with 9, 8, and 7 (10%, 20%, and 30%) missing plants. Other plots with the same stand deficiency were replanted to attain a complete stand 2 or 3 weeks and 1, 2, or 3 weeks after initial transplanting in the spring and fall experiments, respectively. Plots with 30% stand reduction produced a lower weight and number of marketable fruit per hectare than control plots in both seasons. In spring, replanting stand-deficient plots did not increase marketable fruit yields relative to plots not replanted, regardless of the time of replanting or percentage of stand reduction. In fall, under an unfavorable environment due to a late infestation of bacterial spot, replanting plots with 30% stand reduction increased marketable fruit yields over similar plots that were not replanted, when the replanting occurred 1 or 2 weeks after initial transplanting, but not when replanting was delayed 3 weeks. Small, medium, or extra-large marketable fruit weight per hectare were similar in both seasons for plots with 30% stand reduction, whether replanted or not. Mean fruit size (g/fruit) did not differ significantly among treatments in either experiment. These results suggest that replanting improved marketable tomato yields only when the level of stand deficiency reached 30% and only in a stressed environment.
.A. Jaynes (ed.). Handbook of North American nut trees. Northern Nut Growers Assn., Knoxville, TN Stall, R.E. Jones, J.B. Minsavage, G.V. 2009 Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot Annu. Rev. Phytopathol. 47 265