Search Results
). This indicates that PHTs are involved not only in low P but also in drought resistance. Polyethylene glycol 6000 (PEG6000) is frequently used in experiments to simulate osmotic stress ( Bhargava and Paranjpe, 2004 ; Radhouane, 2007 ). With a
Abstract
Polyethylene glycol (PEG-4000)-induced water stress (—0.5 to —7.5 bars) reduced shoot and root growth, water use, and stem 45Ca in seedlings of peach (Prunus persica (L.) Batsch). Sucrose feeding through a leaf did not affect stem 45Ca with or without osmotic stress. 45Calcium uptake per milligram water used was not different at different solution osmotic potentials. A split-root study, with half the root system receiving 45Ca and/or PEG, showed that if 45Ca was supplied only to the water-stressed root half, 45Ca uptake into stems was low regardless of whether the other root half was stressed or not. Results indicate that reduced stem Ca during water stress is probably not a direct result of decreased root energy needed for active uptake or reduced translocation out of the root. Calcium absorption appeared to be related to the amount of unsuberized root surface available for Ca uptake.
Abstract
Germination of tomato (Lycopersicon esculentum Mill.) seeds in petri dishes at various levels of water stress was comparable, except under conditions of severe stress when a PEG pretreatment improved final percentage germination and enhanced the onset and rate of germination. At intermediate or high watering levels, PEG-pretreated seeds germinated more rapidly than untreated seeds, but final germination was not altered by PEG. Germination of seeds in soil, under controlled laboratory conditions, was similar to that in petri dishes except under the driest conditions (5% ASM) when little emergence occurred whether the seeds were pretreated or not. A majority of the seeds which failed to germinate after 2 weeks under dry soil conditions were still viable, since subsequently they could be induced to germinate by moistening the soil to 100% ASM. Water requirement of tomato seeds for optimal rate of germination was cultivar dependent; PI-341988 seeds germinated well at 60% ASM or greater, whereas ST-24 required 100% ASM for best germination.
In unstressed apple seedlings (Malus domestics Borkh.), concentrations of free abscisic acid (ABA) decreased in order from apical stem sections, immature expanding leaves, mature stem sections, and mature leaves. PEG-induced water stress stimulated a 2- to 10-fold increase in free ABA concentrations 1 day after treatment, depending on the amount of stress and the tissue. By the 3rd day of stress, free ABA concentrations were nearly the same as the unstressed treatment and remained low for the remainder of the 21-day stress period. Bound ABA concentrations were an order of magnitude lower than free ABA and were not influenced dramatically by water stress. Shoot growth rate, leaf expansion rate, and leaf emergence rate were reduced by water stress in relation to the severity of the stress; this reduction was associated with the initial increase in ABA. However, there was no increase in shoot or leaf growth rates associated with the decline in ABA concentrations by day 3 as growth rates remained depressed on water-stressed plants throughout the 21-day stress period. Water stress reduced evapotranspiration rate and midshoot leaf water potential (ψW)after 1 day, but leaf osmotic potential (ψS) adjusted more slowly, resulting in a loss of leaf turgor. The reduction in leaf turgor pressure (ψP) was highly correlated with decreased shoot growth rate and increased ABA concentrations on day 1 after treatment. By the 3rd day of water stress, ψP bad recovered even in the most severe treatment, and the recovery of turgor was associated with the drop in ABA concentrations. However, the increase in midshoot ψP and the decline in ABA were not associated with any increase in shoot growth rate. The continued inhibition of shoot growth was probably not related to ABA or turgor pressure of mature leaves but may have been related to turgor pressure in the growing tip.
Water uptake by impatiens (Impatiens wallerana Hook. f. cv. Super Elfin Coral) seeds was measured as an increase in fresh weight every 24 hours during 144 hours of germination. Seeds absorbed most of the water required for germination within 3 hours of imbibition and germinated at 60% to 67% moisture on a dry-weight basis. Germination started at 48 hours and was complete by 96 hours at 25C. Water stress of -0.1, -0.2, -0.4, and -0.6 MPa, induced by polyethylene glycol 8000, reduced germination by 13%, 49%, 91%, and 100%, respectively, at 96 hours. Under the same water-stress conditions, increases in fresh weight were inhibited by 53%, 89%, 107%, and 106%, respectively. Three distinct groups of storage proteins were present in dry seed; their estimated molecular weights were 1) 35, 33, and 31 kDa; 2) 26, 23, and 21 kDa; and 3) two bands <14 kDa. Major depletion of storage proteins coincided with the completion of germination. Water potentials that inhibited germination also inhibited degradation of storage proteins. During germination under optimum conditions, the soluble protein fraction increased, coinciding with a decrease in the insoluble fraction.
screen potential resistant resources for kiwifruit breeding or rootstock selection in future studies, the growth and physiological responses of five Actinidia species to PEG-induced drought stress under tissue culture conditions were measured, and the
Abbreviations: PEG, polyethylene glycol; PER, peroxidase; PGI, phosphoglucose isomerase; PGM, phosphoglucomutase. Florida Agricultural Experiment Station Journal Series no. R-01587. We thank X.B. Ling, S. Huang, D.C. Chen, and N. Tusa for technical
Abbreviations: EPM, embryo production medium; GABA, γ -aminobutyrate; PEG, polyethylene glycol. Journal paper no. 12,637 of the Purdue Univ. Agricultural Experiment Station. We thank A. Altman, Faculty of Agriculture, Hebrew Univ. of Jerusalem, for
beginning of the 20% polyethylene glycol treatment to allow the plants to reach full maturity and develop uniform and equal size roots and shoots. Treatment and experimental design. After adaptation, the plants were exposed to 20% PEG 6000 (−1.8 MPa) for 2
at 20 °C/30 °C. For stress treatments, 60-d-old seedlings with uniform growth were removed from sand carefully and transferred in 1/2 Hoagland nutrient solution containing 20% PEG 6000 (dehydration stress) and 600 mmol·L −1 NaCl (salinity stress