Search Results

You are looking at 1 - 10 of 13 items for :

  • "Citrus limon" x
  • HortTechnology x
Clear All

( Citrus limon ), miniature rose ( Rosa chinensis minima ), azalea ( Rhododendron indicum ‘Formosa’), and wax begonia ( Begonia spp.). Azaleas were sampled from specimens in the first author's home landscape (late winter fertilization with a 10N–4.4P–6.6K

Full access
Authors: and

‘Villa franca’ is the main lemon (Citrus limon) variety in Israel, also cultivated in several other citrus-growing countries. In winter, the fruit turns yellow naturally, but during the summer and autumn, it remains green on the tree and requires postharvest ethylene treatment to stimulate color change from green to yellow. However, ‘Villa franca’ lemons are very sensitive to ethylene, which enhances development of reddish/brown peel blemishes known as red blotch. In the present study, we provide three different methods for postharvest degreening of ‘Villa franca’ lemons without causing red blotch. First is a slow process, involving natural degreening during 4–5 weeks of storage at 13 °C without ethylene exposure. Second is a moderate “under-degreening” process, involving a short 48-hour exposure to ethylene followed by 2 weeks of storage at 13 °C. Third is a fast process involving degreening with ethylene for up to 4 days at a constant high conditioning temperature of 30 °C or a combination of 24 hours of ethylene treatment at 30 °C followed by additional 72 hours of exposure to ethylene at 25 °C. Overall, ‘Villa franca’ lemon growers, packers, and exporters may now choose to use any of these proposed degreening procedures, according to commercial needs and market demands.

Full access

A brief (15 or 30 seconds) high-volume, low-pressure, hot-water drench at 68, 120, 130, 140, or 145 °F (20.0, 48.9, 54.4, 60.0, or 62.8 °C) was applied over rotating brushes to `Eureka' lemons (Citrus limon) and `Valencia' oranges (Citrus sinensis). The impact of this treatment on populations of surface microbes, injury to the fruit, the incidence of green mold (Penicillium digitatum)or sour rot (Geotrichum citri-aurantii), when inoculated into wounds one day prior to treatment, and temperatures required to kill the spores of these fungi and P. italicum suspended in hot water were determined. Fruit microbial populations were determined immediately after treatment. Decay and injuries were assessed after storage for 3 weeks at 55 °F (12.8 °C). The efficacy of the hot water treatments was compared to immersion of fruit in 3% wt/vol sodium carbonate at 95 °F (35.0 °C) for 30 seconds, a common commercial practice in California. Initial yeast and mold populations, initially log10 6.0 per fruit, were reduced to log10 3.3 on lemons and log10 4.2 on oranges by a 15-second treatment at 145 °F. Green mold control improved with increasing temperature and treatment duration. Green mold incidence was reduced from 97.9% and 98.0% on untreated lemons and oranges, respectively, to 14.5% and 9.4% by 30 seconds treatment with 145 °F water. However, immersion of lemons or oranges in 3% wt/vol sodium carbonate was superior and reduced green mold to 8.0% and 8.9%, respectively. Sour rot incidence on lemons averaged 84.3% after all water treatments, and was not significantly reduced, although arthrospores of G. citriaurantii died at lower water temperatures than spores of P. digitatum and P. italicum in in vitro tests. Sodium carbonate treatment for 30 seconds at 95 °F reduced sour rot to 36.7%. None of the treatments caused visible injuries to the fruit.

Full access

Sixteen cultivars of citrus (Citrus spp.) and close citrus relatives were planted in Savannah, Georgia to evaluate their potential as fruiting landscape trees in an area that routinely experiences minimum temperatures of 15 to 20 °F (-9.4 to -6.7 °C) during winter. Three to six trees of each cultivar were planted in 1998, and stem dieback and defoliation data were collected in 1999, 2001, and 2002. During the 4 years of the study, air temperatures fell below 32 °F (0.0 °C) 27 to 62 times per season, with absolute minima ranging from 13 to 18 °F (-10.6 to -7.8 °C), depending on year. In general, kumquats (Fortunella spp.), represented by `Meiwa', `Nagami', and `Longevity', were completely killed (or nearly so) in their first year in the field after air temperature minima of 13.5 °F (-10.28 °C). Others experiencing 100% dieback were `Meyer' lemon (Citrus limon × C. reticulata) and `Eustis' limequat (C. aurantifolia × Fortunella japonica), which were tested twice during the study. Kumquat hybrids, including procimequat [(C. aurantifolia × F. japonica) × F. hindsii), `Sinton' citrangequat [(C. sinensis × Poncirus trifoliata) × unknown kumquat], `Mr John's Longevity' citrangequat [(C. sinensis × P. trifoliata) × F. obovat], razzlequat (Eremocitrus glauca × unknown kumquat), and `Nippon' orangequat (C. unshiu × F. crassifolia) survived freezing, but all experienced at least some defoliation and stem dieback. `Owari' satsuma (C. unshiu), `Changsha' mandarin (C. reticulata), nansho daidai (C. taiwanica) and ichang papeda (C. ichangensis) experienced only minor stem dieback but substantial defoliation in most years, except that ichang papeda was substantially damaged in the last year of the study. Seven cultivars produced fruit at least once during their first 4 years: nansho daidai, ichang papeda, `Nippon' orangequat, `Mr John's Longevity' citrangequat, `Owari' satsuma, `Changsha' mandarin, and procimequat. Based on cold hardiness, fruiting, and growth characteristics, `Owari' satsuma, `Changsha' mandarin, `Mr John's Longevity' citrangequat, and `Nippon' orangequat provided the hardiest, most precocious and desirable fruiting landscape trees in this study.

Full access

As part of a larger study to improve rind color of citrus (Citrus spp.) fruit, this initial study was conducted to determine the concentration of various gibberellin-biosynthesis inhibitors required to elicit a biological response in citrus trees, as measured by vegetative growth. Paclobutrazol and GA3 were included as control treatments at concentrations known to elicit growth-retarding or growth-promoting effects, respectively. Repeated (×4) foliar applications of GA3 (at 64 ppm) increased growth of ‘Eureka’ lemon (Citrus limon) shoots by 63%, with no significant effect on rootstock and scion diameters. Repeated foliar applications of prohexadione-calcium (ProCa) at various concentrations (100, 200, 400, or 800 ppm) as well as uniconazole (at 500 or 1000 ppm) and paclobutrazol (at 0.25%) had no effect on rootstock or scion diameters 8 months after the first application. The high concentrations of ProCa (800 ppm) and uniconazole (1000 ppm), and the paclobutrazol treatment (0.25%) reduced shoot length compared with the control. Uniconazole at 1000 ppm resulted in the most growth retardation, which resulted in 34% shorter shoot length than the control. Although the number of nodes on the longest shoot did not differ from the untreated control, internode length differed significantly among treatments. ProCa at 400 and 800 ppm, uniconazole at 1000 ppm, and paclobutrazol at 0.25% significantly reduced internode length relative to the control by 31%, 56%, 50%, and 28%, respectively. Vegetative growth of ‘Eureka’ lemon nursery trees was retarded following the repeated (×4) foliar application of gibberellin-biosynthesis inhibitors. ProCa at 400 to 800 ppm and uniconazole at 1000 ppm were identified as prospective treatments for further field studies to test their effects on rind color enhancement of citrus fruit.

Full access

Several orchard floor management strategies were evaluated beginning in Fall 1993 in a `Limoneira 8A Lisbon' lemon (Citrus limon) grove on the Yuma Mesa in Yuma, Ariz. and in a `Valencia' orange (Citrus sinensis) grove at the University of Arizona Citrus Agricultural Center, Waddell, Ariz. At Yuma, disking provided acceptable weed control except underneath the tree canopies where bermudagrass (Cynodon dactylon), purple nutsedge (Cyperus rotundus), and other weed species survived. Mowing the orchard floor suppressed broadleaf weed species allowing the spread of grasses, primarily bermudagrass. Preemergence (norflurazon and oryzalin) and postemergence (glyphosate and sethoxydim) herbicides were used to control weeds in the clean culture treatment in Yuma. After three harvest seasons (1994-95 through 1996-97), the cumulative yield of the clean culture treatment was 385 kg (848.8 lb) per tree, which was significantly greater than the 332 kg (731.9 lb) and 320 kg (705.5 lb) per tree harvested in the disking and mowing treatments, respectively. In addition, the clean culture treatment had a significantly greater percentage of fruit in the 115 and larger size category at the first harvest of the 1995-96 season than either the disk or mow treatments. At Waddell, the management strategies compared were clean culture (at this location only postemergence herbicides were used), mowing of resident weeds with a vegetation-free strip in the tree row, and a `Salina' strawberry clover (Trifolium fragiferum) cover crop with a vegetation-free strip. The cumulative 3-year yield (1994-95 through 1996-97) of the clean culture treatment was 131 kg (288.8 lb) per tree, which was significantly greater then the 110 kg (242.5 lb) per tree yield of the mowed resident weed treatment. The yield of the strawberry clover treatment, 115 kg (253.5 lb) of oranges per tree, was not significantly different from the other two treatments. The presence of cover crops or weeds on the orchard floor was found to have beneficial effects on soil nitrogen and soil organic matter content, but no effect on orange leaf nutrient content. The decrease in yield in the disked or mowed resident weed treatments compared to the clean culture treatment in both locations was attributed to competition for water.

Full access

. (2010) reported that the basal medium did not affect the micropropagation of lemon ( Citrus limon ), but explants on DKW medium were greener. In our experiments, DKW medium was markedly superior for shoot proliferation since it provided a relativity

Full access

( Citrus aurantifolia ), lemons ( Citrus × limon ), grapefruit ( Citrus × paradisi ), and oranges ( Citrus × sinensis ); avocado ( Persea americana ), broccoli ( Brasssica oleracea var. italica ), cheese, almonds ( Prunus dulcis ), yogurt, milk, and

Full access

genera and species were identified in all of the sampled gardens, the most abundant of which were rose [ Rosa sp. (58.3%)], olive [ Olea europaea (45.6%)], japanese spindle [ Euonymus japonicus (44.0%)], lemon [ Citrus limon (43.2%)], and canary

Full access

, absorbing close to 18% of the global trade of limes and lemons ( Citrus limon ) in 2011 ( Food and Agriculture Organization of the United Nations, 2012 ). The vast majority (more than 90%) of imported limes is supplied by Mexico—the world’s leading producer

Full access