Potato (Solanum tuberosum L.) production best management practices (BMPs) are under development for the Tri-County Agricultural Area (TCAA; St. Johns, Putnam, and Flagler counties) near Hastings, Fla. BMPs are designed to reduce nitrate non-point pollution in the St. Johns River from the |8000 ha in potato production in the TCAA. Research to develop a controlled release fertilizer (CRF) program to help growers meet the current nitrogen rate BMPs was conducted during the 2003 season. A randomized complete block experiment with four replications was conducted at the Plant Science Research and Education Unit in Hastings, Fla. The treatments were no nitrogen control, ammonium nitrate (168 and 212 kg N/ha) and three CRF products blended at different ratios (168 kg N/ha). Total tuber yields for `Atlantic' for the no nitrogen, and 168 and 212 kg N/ha ammonium nitrate treatments were 11.5, 23.4, and 36.4 MT/ha. The best combination of the three CRF products were a ratio of 33:33:33 with a 40 day, 75 day, 120 day release period, respectively. Total yield for this blend was 42.2 MT/ha. Specific gravities for tubers in all four treatments were 1.060, 1.072, 1.078, and 1.082, respectively. Percent of tubers with hollow heart four all four treatment were 8.1, 18.2, 20.0, and 6.4% respectively. Percent of tubers with internal heat necrosis four all four treatments were 20.6, 8.1, 20.6, and 6.3%, respectively. The CRF treatment produced significantly more tubers than the ammonium nitrate treatment at the same nitrogen rate. Quality of the tubers in the CRF treatment was higher than tubers from the no nitrogen control and ammonium nitrate treatments. Research will continue to optimize the CRF program for potato production in Florida.
-infected Valencia sweet orange. Treatments were established with 10 single-tree replications. Control treatments included either biannual Harrell’s ® 16–5–10 nursery controlled-release fertilizer (CRF) mix or biweekly liquid fertilizer (Peters). Experimental
Excessive electroconductivity measurements have been observed in the surface layer of subirrigated substrates. A hydrophilic gel and rockwool were used as pot mulches in order to reduce the surface layer salt buildup by absorbing the salts and/or reducing evaporation.
Six treatments of `Crimson Fire' and `Victoria' CVI geraniums were grown in 11 cm. pots. Treatments were: Trt 1 - top irrigation, N source 20-10-20; trt 2 - subirrigation, N source 20-10-20; trt 3 - subirrigation, N source in equal portions of 20-10-20 and CRF, gel mulch; trt 4 - subirrigation, N source CRF, gel mulch; trt 5 - subirrigation, N source in equal portions of 20-10-20 and CRF, wool mulch; trt 6 - subirrigation, all N source CRF, wool mulch.
Pots were divided into 3 equal volume portions. Electroconductivity, as a measure of soluble salt (SS) level, was taken. All treatments had increasing SS levels with increasing pot height. Trt 2 had surface layer salt levels significantly higher than trt 1. `Victoria' trts 3,4,5 and 6 surface layers had significantly lower SS levels than trt 1 surface layers. `Crimson Fire' trt 4's surface layer had significantly lower SS levels than the surface layer of trt 1. Trts 4 and 6 bottom layers of both cultivars had significantly lower SS levels than all other treatments.
Improving the quality of water released from containerized production nurseries and greenhouse operations is an increasing concern in many areas of the United States. The potential pollution threat to our ground and potable water reservoirs via the horticultural industry needs to receive attention from growers and researchers alike. `Orbit Red' geraniums were grown in 3:1 peat:perlite medium with microtube irrigation to study the effect of fertilizer source on geranium growth, micronutrient leaching, and nutrient distribution. Manufacturer's recommended rates of controlled-release (CRF) and water-soluble fertilizers (WSF) were used to fulfill the micronutrient requirement of the plants. Minimal differences in all growth parameters measured between WSF and CRF were determined. A greater percentage of Fe was leached from the WSF than CRF. In contrast, CRF had a greater percentage of Mn leached from the system than WRF during the experiment. Also, regardless of treatment, the upper and middle regions of the growing medium had a higher nutrient concentration than the lower region of medium.
Abbreviations: CRF, controlled-release fertilizers; EC, electrical conductance. Contribution no. 2083 of Agriculture Canada Research Station, Kentville. The cost of publishing this paper was defrayed in part by the payment of page charges. Under
Seven nursery grade (8-9 month duration), polymer-coated, controlled-release fertilizers (CRF) were topdressed or incorporated into a 2 peat: 1 vermiculite: 1 sand (by volume) medium to yield the same amount of N per container. The pots (0.5 L) were uniformly irrigated with DI water every week to produce a target leaching fraction of 25%. Leachate N contents (ammonium plus nitrate), employed as indicators of N release, allowed for comparison of CRF performance as a function of temperature changes over a season. Two distinct N leaching (i.e., release) patterns were observed over the 180-day experimental period. The fertilizers Osmocote 18-6-12FS (Fast Start: OSM-FS), Prokote Plus 20-3-10 (PROK), Osmocote 24-4-8HN (High N: OSM-HN) and Polyon 25-4-12 (POLY) exhibited a N leaching pattern that closely followed changes in average daily ambient temperatures (Tavg) over the season. This relationship was curvilinear, with N leaching rates per pot (NLR) being highly responsive to Tavg changes between 20 and 25 °C. Temperatures above 25 °C produced an average maximum NLR of 1.27 mg·d-1 for these fertilizers. OSM-FS, PROK, and OSM-HN had the highest cumulative N losses over the experimental period. In contrast, the CRF group formed by Nutricote 18-6-8 (270: NUTR), Woodace 20-4-12 (WDC), and Osmocote 18-6-12 (OSM) showed a more stable N leaching pattern over a wider range of temperatures, with rates about 30% to 40% lower than those in the temperature-responsive CRF, and averaging a maximum NLR of 0.79 mg·d-1 for Tavg >25 °C. NUTR and WDC had the lowest cumulative N losses over the season. Soluble salt readings paralleled N leaching for each CRF, indicating similar leaching patterns for other nutrients. Incorporation produced significantly higher cumulative N losses than topdressing, but without effect on the actual N leaching pattern over the season. Regardless of the N formulation in the CRF, over 85% of the N recovered in the leachates was in the nitrate form.
`Bluecrop' highbush blueberries (Vaccinium corymbosum L.) received various N fertilizer treatments for 5 years. Treatments were evaluated by measuring berry yields and leaf N levels annually and bush size after 5 years. Nitrogen fertilizers increased yields and leaf N levels compared with nonfertilized controls. Split applications of urea (half applied at budbreak, half at petal fall) resulted in 10% higher yields than the same amount in a single application at budbreak. Urea and two controlled-release fertilizers (CRF) with different dissolution rates (3 to 4 months, 8 to 9 months) resulted in similar yields and leaf N levels when compared at the same rate of N. The dissolution rate of the CRF materials did not affect yields or leaf N levels.
Spiraea japonica L. f. `Froebelii' were grown in 3.8-L containers filled with substrates consisting of recycled paper (RP) and pine bark at rates of 0%, 25%, 50%, 75%, or 100% (by volume) RP. Fertilizer treatments included 100% of the recommended rate of N as controlled release (CRF) or liquid fertilizer (LF) or both. The same amounts of N (as NO3 --N and NH4 +-N), P and K were supplied with each fertilizer treatment. Plants were irrigated in Fall 1996 based on substrate water-holding capacity and to achieve a 25% to 50% leaching fraction. In Spring 1997 regardless of substrate water holding capacity, plants were irrigated weekly initially, then twice weekly later in the study when plants were larger. Fertilizer treatment did not affect plant size, but plant diameter and shoot and root dry weight decreased as substrate RP concentration increased in Fall 1996. All plant size parameters measured decreased as substrate RP concentration increased regardless of fertilizer treatment in Spring 1997. In Fall 1996, shoot and root N concentration increased as CRF decreased (and LF increased), but substrate RP concentration did not affect shoot or root N concentration. In Spring 1997, shoot and root N concentration generally decreased as substrate RP concentration increased with 50% CRF, 50% LF, or 100% LF. Leachate NO3 --N, NH4 +-N and total N generally increased as CRF decreased but decreased as substrate RP concentration increased in both years. Substrate volume and percentage of air space decreased, but bulk density increased, as RP concentration increased. Although N leaching decreased as substrate RP concentration increased in both years, reasonable plant growth occurred only in those substrates containing ≤50% RP.
Many agronomic and horticultural studies on nutrient uptake and use-efficiency have indicated, in general, that agricultural crops are poor competitors for nitrogen (N) and phosphorus (P) in soil-based systems, with estimates of overall nutrient efficiency being less than 50% for N and 10% for P. Low efficiencies are due to losses from leaching, runoff, gaseous emissions and soil fixation, but uptake efficiency is also affected by rate and timing (i.e. seasonal effects) of applications. Controlled-release fertilizers (CRF's) have been promoted as a technology that can slowly release nutrients; the release rate is most often a function of prill coating and temperature. There are few data in the ornamental literature that have directly compared the total uptake efficiency of CRF's to soluble fertilizer sources. From 1999-2002, we collected three annual N and P budgetary datasets, comparing two species (Rhododendron cv. azalea and Ilex cornuta cv.`China Girl') with different growth rates and hence nutrient requirements. Plant N and P uptake efficiencies were usually less than 20% of the total applied, but all datasets included a significant soluble fertilization component. In 2003, a new study with Ilex cornuta cv.`China Girl' was initiated, where nutrients were supplied only from two CRF sources, as we want to determine whether this technology can significantly increase nutrient uptake efficiency at similar rates. A preliminary analysis of the data indicate that total N and P uptake efficiencies between different CRF sources were similar, but leaching losses between sources varied during the growing season. It appears that the primary determinant of uptake efficiency is not source material or timing, but the overall rate of nutrient application.
A leach collection unit (LCU) was assembled to capture all leachate draining from a nursery container. An injection molded 2.8-L nursery container was plastic welded into the lid of a 7.6-L black plastic collection bucket so that the bottom 2.5 cm of the nursery container protruded through the lid. The LCU was designed to track total N release from CRFs without confounding effects of plant uptake or N immobilization. Total N released between any two sampling periods is determined by multiplying the N concentration in a leachate subsample × total leachate volume. The LCU were placed in a container nursery area with overhead irrigation. LCU were thoroughly leached before sampling the leach solution. To study the effects of substrate on N leach rates, Osmocote 18.0N–2.6P–9.9K (8 to 9 months 21 °C) was incorporated at 1.8 kg N/m3 using a locally available, bark-based substrate or medium-grade quartz sand. The experiment was conducted at Scotts Research locations in Apopka, Fla., and Marysville, Ohio. Osmocote incorporated into either a bark-based substrate or sand resulted in similar N release profiles. Although substrate did not affect N leach rate, quartz sand was recommended as the substrate in the leach collection system for polymer-coated CRFs. Quartz sand is chemically and biologically inert, does not immobilize nutrients and has low ion exchange capacity compared to bark-based potting substrates. More than 90% of the total nitrogen applied from Osmocote was recovered from leachate and unreleased N in fertilizer granules. This research has demonstrated the leach collection system as a reliable means to quantify nitrogen release rate of a polymer-coated CRF under nursery conditions. The LCU, when used with a crop plant, allows nutrient budget and nutrient uptake efficiency to be determined for CRFs.