Search Results

You are looking at 81 - 90 of 1,321 items for :

  • "seed germination" x
Clear All

An inexpensive system for maintaining desired water potentials throughout seed germination was developed. During hydration, a water reservoir at the base of inclined petri dishes allowed continual saturation of filter paper on which seeds were placed. During dehydration, seeds were exposed to equilibrium vapor pressures above saturated salt solutions. Constant temperature, necessary to prevent condensation of water vapor, was achieved via a small (0.2 A) fan that furnished and circulated heat throughout an insulated chamber in which salt solutions were placed. By operating the chamber above ambient laboratory temperature, interior cooling was not required. The system allowed manipulation of the rate, degree, and frequency of dehydration episodes to which germinating seeds were exposed.

Free access

Seeds of Aquilegia chrysantha Gray were germinated under a variety of temperature regimes. Germination was nearly 90% under a day/night temperature regime of 25/20C but was reduced to 40% or less under constant 25C or a 25/10C day/night temperature regime. At day temperatures between 25 and 29C (night temperature = 20C), germination percentage dropped gradually to about 60% with increasing temperature. Above a day temperature of 29C, germination declined dramatically such that no germination occurred at 31C. Neither kinetin (1-10 mg/liter) nor ethephon (1-30 mg/liter) were able to reverse the inhibitory effects of a 33C day temperature. Our results indicate that seed germination of A. chrysantha is quite sensitive to temperature and that germination percentages of 75% or greater can be obtained under a 25-27C day/20C night temperature regime.

Free access

The role of light on phlox germination and radicle emergence was studied. Neither light level nor duration affected total germination (G) percentages, which ranged from 93%. to 98%. Increasing light level and lengthening light duration delayed achieving 50% of final germination (T50) and increased the span in days between 10% and 90% germination (T90 - T10). Increasing light duration from 0 to 24 hours during germination at 0.15 μmol·s-1·m-2 progressively increased T50 from 3.5 to 7.1 days and T90 - T10 from 2.6 to 13.1 days. Similarly, lengthening light duration from 0 to 24 hours at 1.5 μmol·s-1·m-2 light increased T50 from 3.7 to 10.8 days and T90 - T10 from 2.8 to 13.4 days, whereas 15 μmol·s -1·m-2 increased T50 from 3.9 to 21.9 days and T90 - T10 from 2.9 to 29.2 days. Increasing the number of days in darkness from 0 to 6 decreased T50 from 14.8 to 4.3 days and T90 - T10 from 20.2 to 3.5 days. Increasing the number of days in light from O to 6 increased T50 from 4.0 to 8.9 days and T90 - T10 from 3.8 to 8.2 days. Estimated rates of decline or increase in T50 and T90 - T10 with each added day in darkness or light were measured by fitting regression equations. Seeds germinated in continuous darkness or in 24 or 48 hours of light followed by total darkness had similar G, T50, and T90 - T10. The results indicate that initial phlox seed germination was not affected by light, but that light inhibited radicle extension in later germination stages.

Free access
Author:

Fermentation and other seed pregermination treatments of Mayhaw [Crataegus opaca (1.) Hook and Arn-Series Aestivales] (Vines,; Phipps, 1988) were evaluated as potential requirements to increase germination percentages. Low seed germinability and arratic seedling emergence are major problems in Crataegus breeding. Freshly harvested fermented open-pollinated seed from 5 different Mayhaw selections averaged 93.4% at 8 days fermentation and 92.8% at 4 days fermentation. Frozen fruit stored from these 5 selections and later fermented 12 days showed the following higher percentages of germination: frozen storage for 10 days - 87.2% (<4 days fermentation (df); frozen storage for 20 days - 83.8% (<4 days df; frozen storage for 30 days - 74.4% (<8 df; frozen storage for 40 days - 72.6% (<4 df; frozen storage for 60 days - 70.2% (<4 df and frozen storage for 90 days - 60.8% (< 8 df. Positive responses to short fermentation durations (<8 days) were observed, but longer fermentation durations were deleterious. Embryo dormancy requiring acid treatment or stratification and problems with germination inhibiting substances were minimized by fermenting fresh ripened fruit containing large embryos. The fruits and seed were not allowed to dry and they were either prepared immediately or frozen for later use.

Free access

Flowering evergreen shrubs that are compact and resistant to pests are in great demand in the nursery and landscape industries. The genus Abelia contains 30 species that vary in many traits including flower color, growth habit, and hardiness. Abelia × grandiflora (Andre) Rehd. and its cultivars are the most widely grown Abelia taxa and are characterized by pest resistance, an abundance of pinkish white flowers, long flowering period, and glossy evergreen foliage. Interspecific hybridization among Abelia × grandiflora, its cultivars, and other species in the genus Abelia offer the potential for new cultivars; however, seed germination within the genus has been described as slow and inconsistent. Experiments were conducted to test procedures to increase germination percentages and rates. Each Abelia seed is enclosed in a leathery achene. The effect of achene removal was examined in combination with cold, moist stratification for 60 days at 4 °C, immersion in 100 ppm gibberellic acid for 24 h, and no treatment. Treatments were replicated five times with 15 seeds per replication. Seeds were sown on sphagnum peat, and grown under mist in the greenhouse. Weekly germination counts were recorded for 8 weeks. Seeds with attached achenes germinated at a significantly higher percentage than those without achenes. Cold, moist stratification and gibberellic acid treatments were not significantly different than the control. No significant differences were found within the achene treatments for relative rate of emergence, but significant differences were found for the time until 90% of final emergence was reached.

Free access

We compared peach [Prunus persica (L.) Batsch cv. Johnson Elberta] seed germination (G) and seedling emergence (E) after various stratification (St) treatments. Treatments were arranged in factorial combinations of five St durations (20 to 60 days) at eight constant temperatures (0 to 18C) in a completely randomized design followed by repeated measures during forcing time. G and E were recorded every 5 days during forcing. Seed St at 0 to 10C and 0 to 14C promoted G and E, respectively. G and E increased with longer St treatments at promoting temperatures. There was a weak correlation between G and E averaged over the forcing measurements (r 2 = 0.54). The best correlation was between E after 15 days and G after 10 days (r 2 = 0.83). The results indicate that G and E in peach are not identical indicators of endodormancy (ED) release and should not be used interchangeably. Forcing times must be considered when making comparisons between G and E.

Free access

Muskmelon (Cucumis melo L.) embryos are enclosed in an envelope consisting of a single layer of residual endosperm and a 2- to 4-cell-layered perisperm. The perisperm envelope (endosperm + perisperm) provides a barrier to radicle elongation. The structure of the perisperm envelope adjacent to the radicle tip was examined using scanning electron microscopy 10, 15, 20, and 25 hours from the start of imbibition in water on germination blotter paper at 25°C. Seeds were frozen in liquid nitrogen and the cone of the perisperm envelope tissue surrounding the embryo was removed. Perisperm cones were mounted on aluminum stubs and coated with gold. At 10 hours after the start of imbibition, there were no visible changes in the tissue. At 15 hours, small cracks were observed in the walls of the perisperm cone tissue between adjacent cells. At 20 hours, the cracks had expanded and were visible throughout the perisperm cone. At 25 hours, radicle emergence occurred in most seeds, because perisperm cells broke apart along the cell walls at the tip of the perisperm cone. Visible evidence suggests that radicle emergence occurred, not because perisperm cells adjacent to the radicle were crushed under the force of the expanding radicle, but rather by a combination of pressure from the radicle as well as degradation of the perisperm cell wall. This confirms previous indirect evidence, obtained by psychrometry, that showed no increase in radicle turgor during germination. Cell wall degradation in the perisperm tissue precedes radicle growth and is a key event in muskmelon seed germination.

Free access

Canterbury bells (Campanula medium `Champion Blue') seeds were primed using calcined clay at 68 °F (20 °C) for 1, 3, or 5 days at water potentials (Ψ) of -25, -20, -18, or -16 bars (-2.5, -2.0, -1.8, or -1.6 MPa). Germination was fastest (3.0 to 3.1 days) after priming with a Ψ of -18 or -16 bars for 5 days. Seeds primed for 3 or 5 days with moisture present germinated faster than nonprimed seeds, but time to 50% germination (T50) was longer when seeds were primed for 1 day regardless of Ψ compared to nonprimed seed. Germination uniformity decreased (time from 10% to 90% germination, T10-90, increased) as Ψ increased. Although a curvilinear relationship existed between T10-90 and priming duration, T10-90 did not differ between nonprimed seeds and seeds in any priming treatment except those primed for 3 days with 20% moisture (-16 bars). Priming did not affect total germination percentage (97%).

Full access

Little is known about the reproductive biology of carolina buckthorn [Rhamnus caroliniana Walt. or Frangula caroliniana (Walt.) Gray], an attractive North American shrub or small tree that might merit increased use in managed landscapes. The fecundity and high germinability of seeds of the Eurasian common buckthorn (Rhamnus cathartica L.), however, have been characterized as factors contributing to its invasiveness. We compared seed germination of these species to ascertain how easily carolina buckthorn could be grown from seed in nurseries and to acquire data for predicting whether carolina buckthorn might be invasive if introduced into managed landscapes. Fruits of carolina buckthorn were collected from indigenous plants in central Missouri, southern Oklahoma, and southern Texas. Fruits of common buckthorn were collected from shrubs naturalized in central Iowa. Seeds of both species were stratified for up to 112 days in darkness at 4 °C; germination at 24 °C in the dark was then evaluated for 56 days. Quadratic functions best described how time of stratification influenced germination value and germination percentage of common buckthorn, whereas these measures of carolina buckthorn were best represented by exponential (value) or linear (percentage) functions. Stratification for 112 days maximized germination value and percentage for carolina buckthorn within the 56-day germination period, but shorter stratifications were sufficient to optimize germination of common buckthorn. While the overall mean germination of carolina buckthorn was 40%, results varied by provenance and ranged from 25% (Missouri) to 56% (Oklahoma). Mean germination of common buckthorn over times of stratification was 71%, and the overall mean daily germination of common buckthorn, 1.3, was 86% greater than that of carolina buckthorn, 0.7. We conclude that seeds of carolina buckthorn are more resistant to germination than seeds of common buckthorn. Our results suggest that plant propagators should cold-stratify seeds of carolina buckthorn for up to 112 days, and suggest that carolina buckthorn has a lower potential to be invasive than does common buckthorn.

Free access

gum can germinate with pulp of drupes intact, although it is unknown whether pulp enhances or impedes seed germination of Nyssa spp. Fagan et al. (1981) demonstrated that seeds of lily turf [ Liriope muscari (Decne.) L.H. Bailey] with their mealy

Free access