Search Results

You are looking at 81 - 90 of 1,151 items for :

  • "maturation" x
Clear All

`Honeycrisp' apples (Malus × domestica) were harvested over 3-week periods in 2001 and 2002. Maturity and quality indices were determined at harvest. Fruit quality was evaluated after air storage [0.0 to 2.2 °C (32 to 36 °F), 95% relative humidity] for 10-13 weeks and 15-18 weeks for the 2001 and 2002 harvests, respectively. Internal ethylene concentrations (IEC), starch indices (1-8 scale), firmness and soluble solids content (SSC) did not show consistent patterns of change over time. Starch hydrolysis was advanced on all harvest dates, but it is suggested that a starch index of 7 is a useful guide for timing harvest of fruit in western New York. After storage, firmness closely followed that observed immediately after harvest, and softening during storage was slow. No change in SSC was observed during storage in either year. Incidence of bitter pit and soft scald was generally low and was not affected consistently by harvest date. The incidence of stem punctures averaged 18.5% over both years, but was not affected by harvest date. Development of stem end cracking in both years, and rot development in one year, increased with later harvest dates. A panel of storage operators, packers, growers, and fruit extension specialists evaluated the samples for appearance and eating quality after storage, and results suggested that a 2-week harvest window is optimal for `Honeycrisp' apples that are spot picked to select the most mature fruit at each harvest.

Full access

Abstract

Data on 15 traits collected from 30 walnut selections were analyzed for changes in relation to both clone and rootstock age. Data collection began at first flowering (age 3 or 4) and continued annually for up to 28 years on each clone. Significant correlations were found between seasonal timing of the expression of phenological traits and clone age. The general trend was towards earlier leafing, bloom, and time of nut maturity as the clone aged. Correlations with rootstock age were lower than with clone age for phenological traits. Shell and kernel trait expression was more highly correlated with rootstock age than clone age, suggesting that changes may be due to vigor and other effects of grafting rather than aging per se. Estimates of the age of stabilization for phenological traits ranged between 9 and 18 years from germination. It is suggested that changes in leafing, bloom, and nut maturity dates be considered prior to commercial release of walnut cultivars.

Open Access

Polyphenols were analyzed in expanding buds and developing leaves of pecan [Carya illinoensis (Wangenh.) C. Koch] cultivars with varying responses to Cladosporium caryigenum (Ell. et Lang. Gottwald), the organism causing scab. Plant tissue extracts were examined by high-performance liquid chromatography using a water: methanol gradient to separate polyphenolic components on a C-18 reversed phase column. A diode-array detector was used to identify profile components by retention times and computer matching of ultraviolet spectra to standard compounds in a library. Concentrations of these polyphenols were compared throughout the growing season in leaves of pecan cultivars with low (`Elliott'), intermediate (`Stuart'), and high (`Wichita') susceptibility to scab; during susceptibility to infection by Cladosporium caryigenum from 16 cultivars; and in `Wichita' leaf discs with and without scab lesions. The major polyphenolic constituent of tissues for all cultivars was identified as hydrojuglone glucoside, which was detected in intact buds and leaves throughout the growing season. Hydrojuglone glucoside concentration increased concomitantly with leaf expansion and then declined slowly. Juglone was barely, if at all, detectable, regardless of leaf age. No correlation was found between cultivar susceptibility to pecan scab and the levels of either juglone or hydrojuglone glucoside in the healthy leaves of 16 cultivars. Leaf tissue with scab lesions had significantly higher juglone and hydrojuglone glucoside levels than leaf discs without scab lesions. Chemical names used: 4-8-dihydroxy-1-naphthyl b-d-glucopyranoside (hydrojuglone glucoside); 1,5-hydroxy-naphthoquinone (juglone).

Free access

The notion that ethylene production levels in nonmelting-flesh (NMF) peach (Prunus persica L.) fruit are normally lower than those in melting-flesh (MF) fruit is refuted in our study. In fact, NMF fruit (`Oro A' and FL 86-28C) usually produced higher levels of ethylene than did MF fruit (FL 90-20 and `TropicBeauty'). In both MF and NMF peaches, the rate of ethylene production, rather than the respiration rate, provided a good indication of the developmental stage of the fruit at harvest. Ethylene content in fruit on the tree followed a climacteric pattern, with the level in `Oro A' (NMF) and FL 90-20 (MF) peaking at 50 and 12 μL·L–1, respectively. The respiratory climacteric was not apparent in either `Oro A' or FL 90-20, and levels of CO2 were similar in both genotypes.

Free access

Bell peppers (Capsicum annuum L.) are classified as nonclimacteric fruits while some hot peppers have been reported as climacteric. Responses of peppers to exogenously applied ethylene-releasing compounds suggest ethylene involvement in the ripening process. Ethylene production and respiration rates in 13 cultivars of pepper: `Camelot', `Cherry Bomb', `Chiltepin', `Cubanelle', `Banana Supreme', `Habanero', `Hungarian Wax', `Mesilla', `Mitla', `Savory', `Sure Fire', `Tabasco', and `King Arthur' were studied under greenhouse and field conditions. Fruit from each cultivar were harvested at different maturity stages determined by color, ranging from mature-green to full red-ripe. Carbon dioxide and ethylene production were measured by gas chromatography. Both variables were significantly different among maturity stages for all cultivars. Respiration rates were between 16.5 and 440.3 mg·kg-1·h-1 CO2. Ethylene production ranged from 0.002 to 1.1 μL·kg-1·h-1. Two patterns of CO2 production were identified: higher CO2 production for mature-green fruit with successive decreases for the rest of the maturity stages or lower respiration rates for mature-green fruit with an increase in CO2 production either when fruit were changing color or once fruit were almost totally red. A rise in CO2 production was present for most cultivars. Ethylene evolution increased significantly at maturity or before maturity in all cultivars except `Cubanelle' and `Hungarian Wax'. Respiration rates and ethylene production were significantly different among cultivars at the mature-green and red stages.

Free access

A statistical model was used to partition the effects of age group, cutting position within the plant crown, and ramet environment on propagule development from stem cuttings collected from random stock plants of Ilex ×attenuata Ashe `Foster #2' (`Foster' holly). Most of the intra-clonal variation observed originated from sources not partitioned by the model. Small differences in growth were associated with sampling position within the crown. Repropagation gave no indication that factors measured by the model could be passed from ramet to propagule. Within-clone variation was not reduced by repropagation or by hedging propagules to force new growth.

Free access

Abstract

The muskmelon cultivar Honey Dew (Cucumis melo L.) has unique horticultural and physiological characteristics, most notably an unusually long period between attainment of acceptable horticultural maturity and self-ripening in the field. Patterns of flowering, fruit set, fruit growth, solids accumulation, softening, ethylene production, respiration, and variation among individual fruits were studied during several seasons. Internal ethylene concentration may be estimated by the following formula: ppm internal = 3.7 ± 1.2 × rate of production in µl/kg-hr. The act of harvesting had no effect on ethylene production or internal concentration. Full ripening required an internal ethylene concentration of about 3 ppm. Horticultural maturity was attained at 35 to 37 days after anthesis, but self-ripening required about 47 days. Commercial harvests include fruits in this range of ages, so treatment with ethylene is required for uniform ripening and consumer satisfaction.

Open Access

Two experiments were conducted to develop a protocol for rooting stem cuttings from 3-, 5-, and 7-year-old fraser fir [Abies fraseri (Pursh) Poir.] Christmas trees. The first experiment tested the effect of stumping treatments and tree age on shoot production and subsequent adventitious rooting. One auxin concentration [4 mm indole-3-butyric acid (IBA)] and a nonauxin control were tested. Stock plants were stumped to the first whorl (trees in the field 3 and 5 years) or the first, third, and fifth whorls (trees in the field 7 years). Intact (nonstumped) controls were also included for each age. The second experiment was designed to create a quantitative description of the effects that crown (foliage and above ground branches of a tree) position have on the rooting of stem cuttings collected from stumped and nonstumped trees. The exact position was determined by measuring the distance from the stem, height from the ground, and the degrees from north. Crown positions were recorded as cuttings were collected and then cuttings were tested for rooting response. The rooting traits assessed in both experiments included rooting percentage, percent mortality, number of primary roots, total root length, root symmetry, and root angle. In the first experiment, rooting percentage, primary root production, and total root length increased as the age of the stock plant decreased and the severity of the stumping treatment increased. Auxin treatment significantly increased rooting percentage, root production, root lengths, and root symmetry while decreasing mortality. Overall, the highest rooting percentages (51%) and the greatest number of primary roots (8.1) occurred when 3-year-old stock plants were stumped to the first whorl and treated the cuttings with 4 mm IBA. The greatest total root lengths (335 mm) occurred in cuttings from the 3-year-old stock plants. In the second experiment, rooting percentage was significantly affected by the position from which the cuttings were collected. Cuttings collected lower in the crown and closer to the main stem rooted more frequently than cuttings collected from the outer and upper crown.

Free access

Abstract

Olive oil application during an approximate 10-day period following the time at which all drupelets within ‘Mission’ fig fruits had turned red was effective in stimulating fruit growth and maturity. Olive oil was found to yield ethylene, particularly when exposed to solar irradiation, and it is this degradation product that undoubtedly is the stimulative agent.

Open Access

Abstract

When applied to individual greenhouse tomato fruit at ages from 15 to 35 days after anthesis, 2-chloroethylphosphonic acid (Ethrel) at 500 ppm reduced the number of days between anthesis and breaker stage by 7 days. As a result, the early yield from treated fruit was increased considerably with the total yield reaching the same level as the control fruit. No difference in pH and only slight differences in titratable acid or soluble solids between treated and control fruit were observed when compared at the same stage of ripeness. This was also true with respect to respiration and ethylene production of fruit harvested at the breaker stage and stored at 23°C.

Open Access