Search Results

You are looking at 81 - 90 of 127 items for :

  • "leaf water potential" x
  • Journal of the American Society for Horticultural Science x
Clear All

Responses of five bottomland tree taxa to drought and flooding were studied to identify those adapted to urban environments. During one experiment, containerized `Franksred' red maple [Acer rubrum L. `Franksred' (trademark = Red Sunset)], sweetbay magnolia (Magnolia virginiana L.), black tupelo (Nyssa sylvatica Marsh.), bald cypress [Taxodium distichum (L.) Rich.], and pawpaw [Asimina triloba (L.) Dunal.] were treated with various irrigation regimes for up to 118 days. Net assimilation rate (NAR) and relative growth rate (RGR) were reduced more by flooding than by drought for plants of all taxa, except pawpaw, which showed similar NAR and RGR during flooding and drought. Only sweetbay magnolia and bald cypress maintained positive NAR and RGR during flooding, and sweetbay magnolia was the only taxon that did not produce significantly less leaf surface area, shoot dry mass, and root dry mass during flooding and drought. Apparent morphological mechanisms of stress resistance included an increase in specific mass of leaves (mg·cm-2) during drought for red maple and bald cypress and a 385% increase in the root: shoot mass ratio for droughted plants of pawpaw. Leaf water relations of drought- and flood-stressed `Franksred' red maple and sweetbay magnolia were determined in a second experiment. Predawn and mid-day leaf water potential (ψ) decreased with decreasing root-zone matric potential for both taxa, and transpiration rate was reduced by drought and flooding. Pressure-volume analysis showed that leaves of `Franksred' red maple responded to drought by shifting symplastic water to the apoplast. Leaves of drought-stressed sweetbay magnolia adjusted osmotically by reducing osmotic potential (ψπ) at full turgor by 0.26 MPa. Our results suggest that sweetbay magnolia and bald cypress will perform well at urban planting sites where episodes of drought and flooding regularly occur.

Free access

The effect of water deficit stress on the foliar solute concentration of Fragaria chiloensis Duch. cv. `BSP14' (FC) and F. virginiana Duch. cv. `NCC85-13V (FV) was studied to assess solute contribution to osmotic adjustment. Plants were stressed for three wilting cycles by withholding water until incipient wilting, followed by a recovery period. The length of each cycle for the FC selection was J-fold that for the FV selection. Wilting of FC plants occurred at a leaf water potential (ψ) 1.1 MPa lower, a leaf osmotic potential (ψπ) 0.45 MPa lower, and a relative water content (RWC) 14% lower than for FV plants. Leaf ψπ at full turgor (ψπ 100) was reduced in the FC selection from 0.11 to 0.27 MPa but not in the FV selection. Water deficit stress increased the total foliar soluble carbohydrate (TSC) concentration from 1.4- to 2.4-fold for FC during each cycle. Glucose and fructose were the primary carbohydrates, comprising >50% of the TSC. Leaf starch concentration decreased appreciably to 4% to 6% of nonstressed (control) levels for FC during each cycle. In the FC selection, the TSC: starch ratio was considerably higher, 30- to 50-fold, in stressed than in control plants. No consistent changes in solute or starch concentration were observed in the FV selection. Total free amino acid concentration increased from 1.8- to 2.7-fold in FC plants in response to stress. Proline accumulation was not detected. The solutes, TSC and amino acids, accounted for <40% of the measured ψπ 100 in control plants, although the average contribution of these solutes to the measured leaf ψπ 100 increased to 40% or more in stressed FC plants. However, the stress-induced increase in solute concentration fully accounted for the reduction of leaf ψπ 100 in the FC selection plants.

Free access

Leaf physiology and plant growth of Rhododendron × `Pink Ruffles' were compared under conditions of 100% sun and under polyethylene shadecloth with specifications of 69%, 47%, and 29% light transmittance. Net CO2 assimilation (A) and stomatal conductance to water vapor (gs) were often reduced for plants in the 100% sun regime, although few differences existed among the 69%, 47%, and 29% sun treatments. Stomatal conductance was very sensitive to leaf to air vapor pressure deficits (VPD), as evidenced by an 85% increase in gs with a decrease in VPD from 3.2 to 2.2 kPa. Light response curves established for plants after 54 days of exposure to 100% and 29% sun were similar, although A was consistently higher at all levels of photosynthetic photon flux for plants in the 29% sun regime. Maximum A was ≈5 and 6 μmol·m-2·s-1 for 100% and 29% sun-grown plants, respectively; light saturation occurred at ≈ 800 μmol·m-2·s-1 Midday relative leaf water content and leaf water potential were not affected by sun regime. The plant growth index decreased with increasing light level. Leaf, stem, and root dry weights; total leaf number and dry weight; total and individual leaf area; dry weight per leaf; and leaf chlorophyll concentration were reduced in 100% sun, yet few differences existed among the 69%, 47%, and 29% sun treatments. Shoot: root ratio and specific leaf weight were proportional to light level. Plants grown in the 100% sun regime were chlorotic and dwarfed, and plants in 29% sun were not sufficiently compact. One year after transplanting to the field under 100% sun, plants of all treatments were chlorotic and failed to grow.

Free access

Physiological characteristics, growth, and biomass production of rainfed and irrigated bell pepper [Capsicum annuum L. var. anuum (Grossum Group) `Quadrato d'Asti'] plants were measured in the semiarid conditions of a Mediterranean summer to determine if drought stress effects are transient and do not affect plant growth and crop yield or are persistent and adversely affect plant growth and crop yield. A low midday leaf water potential indicated the occurrence of transient drought stress episodes in rainfed plants during the first 2 months of the study. Later on, predawn water potential also increased, indicating a persistent drought stress condition despite the occurrence of some rainfall. Photosynthesis was reduced when stress conditions developed, but the reduction was transient and limited to the central part of the day during the first 2 months. As plants aged, however, the impact of drought stress on photosynthesis was not relieved during the overnight recovery period. Stomatal conductance was reduced both during transient and permanent stress conditions while CO2 transfer conductance (i.e., conductance to CO2 inside the leaf) was only reduced when photosynthesis inhibition was unrecoverable. However, chloroplast CO2 concentration was higher in rainfed than in irrigated leaves indicating that CO2 availability was not limiting photosynthesis. Nonphotochemical quenching of fluorescence increased significantly in rainfed leaves exposed to permanent stress indicating the likely impairment of ATP synthesis. Transient inhibition of photosynthesis did not significantly affect leaf area index and biomass production, but growth was significantly reduced when photosynthesis was permanently inhibited. Fruit dry weight was even higher in rainfed plants compared to irrigated plants until drought stress and photosynthesis reduction became permanent. It is suggested that bell pepper growth without supplemental irrigation over the first part of the vegetative cycle does not impair plant growth and may even be useful to improve yield of early fruit.

Free access

Identification of tree taxa that can thrive on reduced moisture regimes mandated by xeriscape programs of the southwest United States could be facilitated if responses to drought of those taxa are determined. Leaf water relations, plant development, and cuticular wax content of seven taxa maintained as well-irrigated controls or exposed to drought and irrigated based on evapotranspiration were studied. Leaf water potential of drought-stressed Fraxinus velutina Torr. (Arizona ash), Koelreuteria paniculata Laxm. (golden rain tree), Quercus macrocarpa Michx. (bur oak), and Quercus muehlenbergii Engelm. (chinkapin oak) were lower at predawn than the controls. Drought-stressed plants of F. velutina, K. paniculata, and Quercus lobata Née (California white oak) had more negative midday water potential than the control plants. Drought reduced stomatal conductance to as little as 17%, 23%, and 45% of controls in F. velutina, K. paniculata, and Q. macrocarpa, respectively. Drought-stressed plants of F. velutina, K. paniculata, Q. macrocarpa, and Q. muehlenbergii had reduced transpiration rates. Fraxinus velutina had both the highest net assimilation rate (NAR) and relative growth rate (RGR) regardless of irrigation treatment. Mean specific leaf weight (dry weight (DW) of a 1-cm2 leaf disc divided by the weight), trichome density, stomatal density, leaf thickness, and cuticular wax content varied among species but not between irrigation treatments. Leaves of Q. buckleyi Buckl. (Texas red oak) had one of the highest stomatal densities, and also had leaves which were among the waxiest, most dense, and thickest. Abaxial leaf surfaces of F. velutina were the most pubescent. Across species, drought led to lower ratios of leaf surface area to root DW, and leaf DW to root DW. Quercus buckleyi plants subjected to drought had the highest root to shoot DW ratio (3.1). The low relative growth rate of Q. buckleyi might limit widespread landscape use. However, Q. buckleyi may merit increased use in landscapes on a reduced moisture budget because of foliar traits, carbon allocation patterns, and the relative lack of impact of drought on plant tissue water relations.

Free access

A comparative study was performed to elucidate changes in the water relations of Fragaria chiloensis (L.) Duch. `BSP14' (FC) and F. virginiana (L.) Duch. `NCC85-13V' (FV), grown in containers in a greenhouse, in response to imposed water deficit stress and subsequent recovery. At incipient wilting, a reduction in osmotic potential at full turgor (Ψπ 100 of 0.42 MPa occurred in leaves of FC, while no change was found in FV. Leaf water potential (Ψ) isotherms revealed that as leaf Ψ and relative water content (RWC) declined, stressed FC plants maintained a higher turgor potential (ΨP) and lower osmotic potential (Ψπ) than nonstressed (control) plants, while there was no effect of drought stress on these relationships in the FV plants. From the isotherms, turgor loss was estimated to occur at a lower leaf Ψ and RWC in stressed FC plants than either in control FC plants or stressed and control FV plants. During a diurnal phase 36 hours after wilting, leaf Ψ, Ψπ and RWC of the FC selection were generally lower in stressed than in control plants, with differences ranging from 0.14 to 0.74 MPa, 0.28 to 0.47 MPa, and 1% to 8%, respectively. In the FV selection, Ψπ was 0.09 to 0.31 MPa lower in stressed than in control leaves, while the other characteristics were not affected. Leaf ΨP, of stressed FC plants was 0.09 to 0.27 MPa higher than controls during the dark period, but was similar during the day. When plants of both species were grown and stressed in the same container, FV plants wilted ≈4 days earlier than FC plants, and foliar Ψπ 100 of FC was 0.35 MPa lower than that of FV at incipient wilting. The isothermal relationships between leaf Ψ and Ψπ 100 indicated FC had a Ψπ 100 ≈ 0.25 MPa lower than FV at a Ψ <1.5 MPa. This study provided evidence for greater osmotic adjustment in response to imposed water deficit stress in a selection of F. chiloensis than in one of F. virginiana.

Free access

Abstract

Fruit from 7- and 8-year-old ‘Tifblue’ rabbiteye blueberry [Vaccinium ashei (Reade)] plants were harvested at 0600, 0900, 1200, and 1500 hr. Harvests occurred twice a season for each of 2 years. Fruit cullage after machine harvesting averaged ≈30% of total fruit harvested. The first machine harvest in a season had 6% to 16% less cullage than the last harvest. The number of mature fruit remaining on the plants after harvesting decreased with later harvest times during the day. Thus, an increase in harvester efficiency corresponded to decreased leaf water potential. The effect of harvest time during the day on packout and fruit quality after storage was inconsistent between and within years. There was no optimum time of day to machine-pick blueberries when fruit were promptly sorted and cooled after harvest.

Open Access
Author:

Abstract

Translocation of l4C-sucrose from leaf to fruit was measured in ‘Golden Delicious’ and ‘Staymared’ apple (Malus domestica Borkh.) and ‘Redhaven’ peach (Prunus persica (L.) Batsch) following the application of compounds reported to influence fruitlet abscission. Succinic acid-2,2-dimethylhydrazide (daminozide) reduced 14C translocation in both apple cultivars but reduced fruit set only in ‘Golden Delicious’. Ethephon reduced 14C translocation and fruit set of peach. Abscisic acid (ABA) and 2,4-dinitrophenol (DNP) reduced 14C-sucrose translocation in apple. Enclosing apple limbs in black cloth bags reduced fruit set and naphthaleneacetic acid (NAA) increased leaf water potential. One method of preliminary screening of compounds for apple fruit thinning may be based on their effect on 14C-sucrose translocation from foliage to fruit.

Open Access

Abstract

The effects of water stress on internal water potential components and specific physiological processes were investigated in field grown potatoes (Solanum tuberosum L. cv. Viking). Leaf water potential (ψ leaf) as estimated by the pressure chamber, was not directly related to soil water potential (ψ soil) until a specific minimum ψ soil was attained. Subsequently ψ leaf did not increase in response to increases in ψ soil. Water stress affected physiological processes such as stomatal resistance, photosynthesis and enzyme activity. A decline in ψ leaf was apparently responsible for increased stomatal resistance and decreases in photosynthetic rates. The activities of ribulose diphosphate carboxylase and phosphoenolpyruvate carboxylase decreased as ψ leaf declined. The relationship between water stress and physiological processes and the inability of ψ leaf to respond to increases in ψ soil after a maximum stress may partially explain the extreme sensitivity of potatoes to even mild water stress.

Open Access

Abstract

Paclobutrozol PP333 = (2R,3R + 2S,3S)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl) pentan-3-ol at concentrations of 11.6, 58.0, and 116.0 mg of active ingredient per liter caused significant reductions in water use of sunflowers (Helianthus annuus L.) but there was no significant influence on leaf diffusive resistance. The primary mechanism for reduced water use is by a reduction in leaf expansion. PP333 inhibited internode elongation which causes increased leaf shading. Under nonstress conditions there was no effect on leaf water potential or its components. At the highest concentration, photosynthetic rate was reduced. Fresh and dry weight of shoots was reduced proportional to leaf area. Gibberellic acid reversed the effect of PP333 of shoot height, leaf area, evapotranspiration, and shoot fresh and dry weight.

Open Access