Search Results

You are looking at 81 - 90 of 379 items for :

  • "hydroponics" x
Clear All
Author:

Abstract

Boron deficiency symptoms of hydroponically-grown Ficus elastica Roxb. ‘Decora’ included plant stunting, deformation of immature leaves and necrosis of terminal bud. Excessive boron caused the undersides of mature leaves to have brown, circular lesions with chlorotic halos, starting at leaf margins. Affected leaves abscised prematurely. Boron deficiency symptoms of hydroponically-grown Chrysalidocarpus lutescens Wendl. included stunted growth, chlorotic mottling and streaking of leaflets and eventual death of immature leaves and terminal bud. Inflorescences bore necrotic fruits and died prematurely. Toxicity symptoms included leaflet mottle chlorosis and premature death and tip-bum of all leaves.

Open Access

The sweetpotato [Ipomoea batatas (L.) Lam] breeding clone TU-82-155 was grown during Spring 1990 and Summer 1991 in standard Tuskegee Univ. (Alabama) growth channels (0.15 × 0.15 × 1.2 m) for 120 days in a greenhouse using a hydroponic (nutrient film) system with a modified half-strength Hoagland nutrient solution. The nutrient solution was changed every 2, 14, or 28 days. Total N, oil, ash, amino acid, vitamin, and mineral concentrations in storage roots generally were higher and dry weight and starch concentration were lower with 2-day solution changes than with those less frequent.

Free access

The effects of 0.25, 1.0, 2.5, 10, and 100 mg Mn/liter on sweetpotato [Ipomoea batatas (L.) Lam] were evaluated in a greenhouse during 2 years using the nutrient film technique. Foliage and storage root dry weights declined linearly as Mn concentration increased in either whole plants or fibrous roots. Foliage and storage root dry weights were equally sensitive to Mn concentration in whole plants but 5 to 15 times more sensitive to increased Mn concentration in the fibrous roots. Foliar N, P, K, Ca, and Mg concentrations were adequate and did not appear to limit plant growth. Manganese concentrations in solution had very little effect on Fe, Zn, or B concentration. Manganese concentration was higher in the foliage than in fibrous roots. Plant roots showed browning at the higher (10 or 100 mg Mn/liter) concentrations in solution, which indicated the presence of oxidized Mn. Characteristic toxicity symptoms were observed in plants receiving 2.5 (moderate), 10, or 100 mg Mn/liter in solution.

Free access

`Inca Yellow' marigolds (Tagetes erects L.) were planted in polyethylene bags containing coal bottom ash (CBA), pine wood peelings (PWP), a mixture of 1 CBA: 1 PWP (v/v), and loose Grodan rockwool (RW) and grown in a circulating nutriculture system. Three fertigation frequencies of 12, 6, or 4 cycles per 12-hour light period were set with a duration of 5 minutes each. Flower diameters of marigolds grown in CBA, PWP, and CBA-PWP exceeded flower diameters of RW-grown marigolds, and days from planting to harvest were less in CBA and CBA-PWP than in the other two media. There was no interaction between medium and fertigation frequency. Foliar analysis showed no significant differences in plant elemental composition among root media or fertigation frequencies. Postharvest PWP water extracts contained higher P levels than extracts of other media, and CBA-PWP water extracts contained higher K, Ca, and Mg. In the CBA-PWP mixture, decomposition products from PWP may have increased P volubility and solubilized the K, Ca,-and Mg-in CBA.

Free access

Experiments were conducted to determine the effect of varying solution N concentrations on fruit yield and NO3-N concentration in leachate from rockwool-grown `Midal' peppers (Capsicum annuum L.) in Florida. Treatment 1 plants received a series of nutrient solutions containing N at 60, 90, and 120 mg·liter–1 (60–90–120 mg·liter–1) during their growth cycle. Plants in treatments 2 and 3 were grown with N at 120 or 175 mg·liter–1, respectively, throughout their entire growth cycle. Two trials were conducted; trial 1 from 17 Nov. 1991 to 1 July 1992, and trial 2 from 31 July 1992 to 23 Feb. 1993. In both trials, total marketable fruit weight was significantly (P ≤ 0.05) higher (16% to 67%) for plants grown with N at 175 than with 60–90–120 mg·liter–1. In trial 2, plants receiving N at 175 mg·liter–1 produced significantly more fruit (8%) and 14% higher total fruit weight than plants receiving N at 120 mg·liter–1. The trend toward higher yield with N at 175 rather than 120 mg·liter–1 also occurred during trial 1, but differences were not significant. Nitrogen concentration did not significantly affect the percentage of total fruit having blossom-end rot in either trial (41% in trial 1; 13% in trial 2). Nitrogen at 175 mg·liter–1 resulted in 10% to 40% increases in total nutrient solution use and 2.5- to 3.5-fold increases in leachate NO3-N concentration compared to N at 120 mg·liter–1.

Free access

Growth chamber experiments were conducted to study the physiological and growth response of sweetpotato [Ipomoea batatas (L.) Lam.] to either 50% or 85 % relative humidity (RH). Vine cuttings of T1-155 were grown using the nutrient film technique in a randomized complete-block design with two replications. Temperature regimes of 28/22C were maintained during the light/dark periods with irradiance at canopy level of 600 μmol·m-2·s-1 and a 14/10-hour photoperiod. High RH (85%) increased the number of storage roots per plant and significantly increased storage root fresh and dry weight, but produced lower foliage fresh and dry weight than plants grown at 50% RH. Edible biomass index and linear growth rate (in grams per square meter per day) were significantly higher for plants grown at 85 % than at 50% RH. Leaf photosynthesis and stomatal conductance were higher for plants at 85 % than at 50% RH. Thus, the principal effect of high RH on sweetpotato growth was the production of higher storage root yield, edible biomass, growth rate, and increased photosynthetic and stomatal activity.

Free access

Abstract

Four cultivars of greenhouse tomato (Lycopersicon esculentum Mill.) were grown in the greenhouse and two cultivars were grown in growth chambers in order to study the effects of root and air temperature on the elemental composition (N, P, K, Ca, and Mg) of leaf tissue. Most of the variation observed in the nutrient composition of leaves was due to air temperature and the cultivar used; only few root temperature effects were significant. Low air temperatures (24°/14°C, 24°/8°, 19°/14°; day/night) resulted in higher N concentrations in the leaf tissue, whereas root temperature had little effect on N. Response to air temperature was similar for P or for N. However, response to high root temperature (27° and 24° in the greenhouse and the growth chamber, respectively) was greater for P than for N. Air and root temperatures had little effect on K concentration in tomato leaves. Consistently high Ca and Mg levels resulted with low air temperatures (24°/8°, 19°/14°, 13°/8°), whereas root temperature had no effect on accumulation of these two nutrients. The incidence of blossom-end-rot in the fruit of all cultivars used in the study was associated with low Ca and Mg levels in the leaf tissue.

Open Access

Abstract

Several levels of photosynthetic photon flux density (PPFD) were tested for effects on growth of 4 cultivars of lettuce (Lactuca sativa L.) under controlled-environment conditions. Growth of ‘Salad Bowl’, ‘Bibb’, and ‘Ruby’ was greater at 932 µmol s -1m-2 than at ≤ 644 µmol s-1m-2 under a 16-hour photoperiod. Thirty mM NO3 - or 5 mM NH4 + + 25 mM NO3 - increased leaf dry weight while reducing leaf chlorosis in ‘Salad Bowl’ and ‘Grand Rapids’ relative to that with 15 mM NO3 -, and reduced leaf purpling in ‘Bibb’ and ‘Ruby’ with little or no effect on yield. Continuous illumination with 455 or 918 µmol s-1 m-2 stimulated yield of ‘Salad Bowl’ and ‘Bibb’ when 30 mM N as NH4 + + NO3 - was used relative to that with 15 mM NO3 -.

Open Access

Abstract

Cultivars of greenhouse tomato (Lycopersicon esculentum Mill.) were grown in the greenhouse and in growth chambers to study the effects of root and air temperature on flowering and yield. A low air temperature of 19° (day)/14°C (night), during the fall crop, caused no reduction in yield when compared with the commonly used 22°/17° air temperature. A 13°/8° air temperature during the spring crop drastically reduced yield compared with the 19°/14°C air temperature. Flowering of ‘Ohio MR-13’ in growth chambers was delayed significantly at air temperatures of 24°/8° compared to 24°/17°, but the flowering of ‘Vendor’ was unaffected by air temperature treatments. Marketable yield of ‘Vendor’ was significantly higher at 24°/8° compared to the 24°/17° treatment, while the marketable yield of ‘Ohio MR-13’ was unaffected. At a constant, day air temperature of 24°, the amount of small fruit decreased as night air temperature was lowered from 17° to 8° and maturity was delayed as night air temperature was lowered from 14° to 8°. The effect of low air temperature on flowering and yield of tomatoes was large and could not be offset by increasing root temperatures. At air temperatures of 24°/17°, 24°/14°, and 24°/8°, marketable yields were affected adversely by the absence of root thermoperiodicity (day to night root temperature variation).

Open Access

Abstract

A method is described for studying the 3-dimensional distribution of roots grown in a medium consisting of small pieces of glass. After growing to a desired size, the plant is sacrificed by evaporating all water from the media with flowing air. To visualize the undisturbed root system, an immersion oil with the same refractive index as the glass is added to the glass container in which the plant was grown.

Open Access