Search Results

You are looking at 81 - 90 of 767 items for :

  • "drought stress" x
Clear All
Free access

Zhaolong Wang and Bingru Huang

Drought is a major limiting factor for turfgrass growth. Understanding genetic variations in physiological responses of turfgrass to drought stress would facilitate breeding and management programs to improve drought resistance. This study was designed to evaluate responses of abscisic acid (ABA) accumulation, water relations, and gas exchange to drought stress in four Kentucky bluegrass (Poa pratensis L.) cultivars differing in drought resistance. Plants of `Midnight' and `A82-204' (drought resistant) and `Brilliant' and `RSP' (drought susceptible) were grown under well-watered (control) or drought stress conditions for 25 days in growth chambers. Turf quality, leaf water potential (Ψleaf), relative water content (RWC), leaf net photosynthesis rate (Pn), and stomatal conductance (gs) declined, while electrolyte leakage (EL) increased during drought progression in all cultivars. The magnitudes of the change in these parameters were greater for `RSP' and `Brilliant' than for `Midnight' and `A82-204'. Leaf ABA content in `RSP' and `Brilliant' increased sharply after 2 days of stress to as much as 34 times the control level at 10 days of drought. Leaf ABA content in `Midnight' and `A82-204' also increased with drought, but to a lesser extent than in the other two cultivars. Leaf ABA level was negatively correlated with Ψleaf and gs. `A82-204' had a significantly lower ABA accumulation rate with changes in Ψleaf during drought compared to `Midnight', `RSP' and `Brilliant'; however, no differences in ABA accumulation rate were detected among the latter three cultivars. In addition, leaf gs was more sensitive to changes in ABA accumulation in `Midnight' and `A82-204' than in `RSP' and `Brilliant'. These results demonstrated that drought tolerant cultivars of Kentucky bluegrass were characterized by lower ABA accumulation and less severe decline in Ψleaf, Pn, gs, and turf quality during drought stress than drought sensitive cultivars. Drought tolerance of Kentucky bluegrass could be related to sensitivity of stomata to endogenous accumulation of ABA under drought stress conditions.

Free access

David C. Percival, John T.A. Proctor and J.P. Privé

Rubus idaeus L. cv. Heritage raspberries were placed in controlled environment chambers (25°C, 14-hour photoperiod, 2.0 kPa vapor pressure deficit, CO2 concentration of 380 mol·m-2·s-1) to study the effects of drought stress on leaf gas exchange and stem water potential. Whole-plant photosynthesis (Pn) and transpiration were sensitive to drought stress and gradually decreased from the second day of the study until rehydration. Stomatal aperture feed-back regulation was present during the initial 48 hours of the study with transpiration rates dropping in response to a decrease in stem water potential. Spatial differences were also present with leaf Pn, and stomatal and CO2 conductance values of the younger, distal (i.e., closer to the apex) leaves decreasing at a faster rate than the older, proximal leaves (i.e., close to crown). Evidence of increased mesophyll resistance to drought stress was apparent with ci either remaining constant or increasing, while Pn and carboxylation efficiency simultaneously decreased. Protection of the underlying photochemistry was evident with parahelionastic leaf movements which resulted in a reduction in the effective leaf area and subsequent heat load. Therefore, an optimum balance between water loss and ci existed, and an alteration in these rates represented a stomatal conductance adjustment to match the intrinsic photosynthetic capacity rather than just a causal relationship.

Free access

Stephen E. McCann and Bingru Huang

In response to drought stress, plants develop various adaptive mechanisms, including drought tolerance and avoidance strategies ( Nilsen and Orcutt, 1996 ). Plants may avoid drought stress by maintaining favorable water status under drought either

Free access

William L. Bauerle, Jerry B. Dudley and Lawrence W. Grimes

Cultivars of red (Acer rubrum L.) and Freeman maple (Acer ×freemanii E. Murray) are popular ornamental plants which are commonly placed in a variety of landscapes. To date, little information quantifies the capacity to tolerate and recover from drought among cultivars of red and Freeman maple. The objective of this study was to compare the effects of water stress on the physiology of five different maple cultivars of marketable size including four red maple genotypes, `Summer Red', `October Glory' (October Glory), `Autumn Flame', and `Franksred' (Red Sunset), as well as one hybridized Freeman maple genotype, `Jeffersred' (Autumn Blaze). Two-year-old cloned genotypes of red and Freeman maple were subjected to two treatments: irrigated daily to container capacity or irrigation withheld for one drought and recovery cycle. Light absorption, gas exchange, and chlorophyll fluorescence measurements were conducted under well-watered and drought stress conditions that approached 0.070 m3·m-3. Compared to well-watered conditions, drought stress conditions of 0.090 m3·m-3 had a significant main effect that reduced the amount of light absorption in four of the five genotypes. Additionally, absorption among genotypes was different under both well-watered and water stress conditions. Over the course of drought stress and a recovery phase, net photosynthesis and stomatal conductance were different among genotypes. Maximum photosystem II (PSII) efficiency of dark-adapted leaves (Fv/Fm) was lowered by the water stress condition. The efficiency of excitation capture by open PSII reaction centers (Fv`/Fm') was variable among genotypes. Photochemical quenching was higher in Autumn Blaze, October Glory, and `Summer Red' under drought conditions, which corresponded with a low degree of closure of PSII centers. Additionally, the fraction of excess excitation energy was also lower. Lastly, water deficit caused an increase in PSII efficiency in all genotypes except Autumn Blaze. This research demonstrated physiological variation among commercially available red and Freeman maple genotypes that may be selected for drought tolerance based on site moisture characteristics.

Free access

M. Rieger

Root hydraulic conductivity (Lp) and osmotic potential (π) were measured in young, drought-stressed and non-stressed peach (Prunus persica), Olive (Olea europea), Citrumelo (Citrus paradisi x Poncirus trifoliata) and Pistachio (Pistachia integerrima) plants. Drought stress reduced Lp 2.5 to 4.2-fold, depending on species, but π was reduced only in expanded citrumelo leaves and unexpanded olive leaves by 0.34 and 1.4 MPa, respectively. A simulation model of plant water uptake and leaf water relations was constructed to quantify the offsetting effects of reduced Lp and osmotic adjustment (OA) on turgor maintenance. For olive data, a 2.5-fold reduction of Lp caused a linear decrease in turgor pressure difference between stressed and non-stressed plants, such that the effect of OA was totally offset at a leaf water potential (stressed) of ≈ -3.0 MPa. For citrumelo, because the degree of OA was lower, the water potential at which the effects of OA and reduced Lp were offsetting with respect to turgor maintenance was ≈ -0.6 MPa. The analysis suggests that some level of stomatal closure would be necessary to extend the water potential range over which stressed plants maintain higher turgor than non-stressed plants for citrumelo. Conversely, no degree of stomatal closure would be required of stressed olive plants to maintain higher turgor than non-stressed counterparts over a physiologically meaningful range of leaf water potential.

Free access

Diheng Zhong, Hongmei Du, Zhaolong Wang and Bingru Huang

Drought stress is one of the most detrimental abiotic stresses of plant growth and production, causing water deficit and various cellular and biochemical changes ( Nilsen and Orcutt, 1996 ). Damage to cellular membranes is caused by leaf desiccation

Free access

Emad Bsoul* and Rolston St. Hilaire

Although valued for its fall foliage color, bigtooth maple (Acer grandidentatum Nutt.) is not widely used in managed landscapes. Furthermore, information on the tolerance of bigtooth maples to drought is scant. We studied water relations, plant development, and carbon isotope composition of bigtooth maples indigenous to New Mexico, Texas, and Utah. Plants were field grown in New Mexico using a pot-in-pot nursery production system. Plants were maintained as well-irrigated controls or irrigated after the weight of pots decreased by 35% due to evapotranspiration. Drought treatment lasted 71 days. Among the drought-stressed plants, plants native to Logan Canyon in Utah (designated UW2), had the greatest root: shoot dry weight ratio (3.0), while plants with the lowest root: shoot dry weight ratio (0.9) were half siblings from a tree native to the Lost Maples State Park in Texas (designated LMP5). Among the five sources we tested, LMP5 had the greatest (1242 cm2) leaf area, while UW2 plants had the smallest (216 cm2). Regardless of the treatment, plants from LMP5 had the highest shoot dry weight (25.7 g). Plants showed no differences neither among sources nor between treatments in relative water content, specific leaf weight, xylem diameter, root dry weight, plant dry weight, relative growth rate, and carbon isotope discrimination, which averaged - 26.53%. The lack of differences in these parameters might be due to selection of these sources from provenances we deemed to be the most drought tolerant. Our selection was based on the results of a previous greenhouse study of 15 bigtooth maple sources. We conclude that these sources, and in particular, plants from LMP5 in Texas, might hold promise for use in areas prone to drought.

Free access

Lili Zhuang, Mengxian Liu, Xiuyun Yuan, Zhimin Yang and Bingru Huang

Drought stress caused by lack of rainfall or irrigation is a major abiotic stress limiting plant growth and crop productivity worldwide ( Fischer and Turner, 1978 ). Efficient water transport in plant organs is a critical process to maintain

Free access

Alexandra García-Castro, Astrid Volder, Hermann Restrepo-Diaz, Terri W. Starman and Leonardo Lombardini

of P. incarnata to drought stress conditions. The objective of this study was to determine the effects of drought stress on leaf water potential, and gas exchange in P. incarnata . The hypothesis was that P. incarnata has moderate

Free access

R. Thomas Fernandez, Robert E. Schutzki and Kelly J. Prevete

Responses of Magnolia ×soulangiana (Soul.-Bod.) `Jane' (`Jane' saucer magnolia) to consecutive short term pretransplant drought stresses and recovery after transplanting were evaluated beginning October 1997 and June 1998. Plants were subjected to one (mild) or two (moderate) 3-day drought stress periods or a two 3-day and one 4-day (severe) drought stress period, each separated by two rewatering periods over 24 hours. One day after each stress period, plants were transplanted into the field and well watered to monitor recovery from stress. Plant response was determined by measuring whole-plant CO2 assimilation, leaf gas exchange (CO2 assimilation, transpiration, stomatal conductance) and canopy growth throughout stress and recovery periods. Whole-plant and leaf CO2 assimilation were lower for the stressed treatments for most of the measurements taken during stress in the fall and spring. After release from stress and transplanting, leaf CO2 assimilation returned to control levels for mild and moderate fall stresses within 2 to 3 d by the next measurement, while it was over 3 weeks until recovery from the severe stress. There was no difference in leaf gas exchange following release from stress and transplanting during the spring stress. More rapid defoliation occurred for the severe fall-stressed plants compared to the controls after release from stress in the fall. Flower number was reduced in spring for the fall-stressed plants. At termination of the experiment, the growth index was lower for severe fall-stressed plants but there were no differences for other fall stress treatments. There was no increase in growth for control or stressed plants for the spring experiment.